

Security Architecture requirements

(ADV_ARC)

for smart cards and similar devices

extended to Secure Sub-Systems in SoC

Appendix 1

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 2/39 Version 2.1 July 2021

Version 2.1

July 2021

This page is intentionally left blank

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 3/39

Table of contents

Contents

0 Preface .. 4

0.1 Glossary.. 4

0.2 Abbreviations .. 6

0.3 Editing convention of the document .. 6

1 Introduction .. 10

1.1 Purpose and Scope .. 10

1.2 Documentation .. 11

2 Security services and Security mechanisms .. 12

2.1 Security Services provided by the underlying platform ... 12

2.2 Security mechanisms of the TSF .. 14

3 Security domain separation .. 19

4 Initialization / start-up .. 25

5 Self-protection .. 29

5.1 Self-protection and initialisation process ... 29

5.2 Self-protection and low function mode .. 29

5.3 Self-protection in full operational state of the TSF .. 30

6 Non-bypassability .. 33

6.1 TSF always invoked .. 34

6.2 Side Channel .. 34

7 TOE protection in presence of attacks ... 37

8 Bibliography ... 39

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 4/39 Version 2.1 July 2021

0 Preface

This document is the informative part of the Joint Interpretation Library document ñSecurity

Architecture requirements (ADV_ARC) for smart cards and similar devices extended to

Secure Sub-Systems in SoCò.

It contains examples for the type of information and level of detail to be provided in the

ARC document applicable to this technical domain.

The preface of the document suggests additional terminology, abbreviations and examples of

document structure useful for the ARC document. The main part of this document is at once:

- a template of the ADV_ARC document (printed in normal font)

- an explanation that can help in the understanding of the mandatory part (in box)

- a collection of examples (prefixed with the key word <Example> and ended by <>)

0.1 Glossary
This section suggests some terminology in order to help the developer describing the security

architecture of the TOE. While the CC terminology (cf. [3] and [4]) focuses on description of

security requirements these additional terms are intended for detailed description of the design

and the implementation of the security architecture.

Security function ï description what (in terms of action) the TSF, a subsystem, or a module

does in order to meet one or more SFR (i.e. it is a subset of TOE security functionality).

Security property ï invariant property of the TOE, the TSF, a subsystem or a module related

to security. The generic security property of the TOE is non-bypassability of the TSF. The

generic security properties of the TSF are domain separation, non-bypassability, secure

initialization, self-protection as required by family ADV_ARC.

Security feature - combination of security functions implemented and security properties

ensured on level of TOE, TSF, subsystem and module in order to prevent one or more attacks.

Often the composition of a security feature only becomes clear when considering a specific

attack path during vulnerability analysis.

Security mechanism - description how a security function (or its part) is implemented in

order to meet an SFR or to enforce architectural soundness. The level of details is defined by

purpose of modules (cf. component ADV_TDS.3 and higher).

Countermeasure ï generic word, all means to protect the assets against the threats.

Architectural countermeasure ï description how a security property of the TOE, the TSF,

subsystems or modules is implemented or enforced by other means than functions or

mechanisms. E.g. the TSF of a security integrated circuit implements light sensors

(mechanism) to protect sensitive modules against light attacks. The physical layout

(architectural countermeasure) ï besides many other factors ï exercises an influence on the

effectiveness of this protection depending on but not changing the security mechanism of the

light sensors.

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 5/39

Security service - a combination of security functions provided for the user. As an example

the Security IC provides security services for the Security IC Embedded Software (e.g.

cryptographic operations, random number generation). If the TOE is a composite TOE, the

ñplatformò provides security services to the ñapplicationò (following the definitions of

Supporting document CCDB 2007-09-001).

Note the term ñsecurity measureò means technical and organizational measures that ensure the

security of the development environment and production environment; therefore security

measures do pertain to the TOE but are not part of the TOE or subject of the ARC document.

Figure 1 Suggested terms for security architecture description

The text printed in italic in figure 1 is not contained in CC / CEM but introduced here.

Note these terms will be used in the concrete context of the TOE, the TSF, the subsystems or

modules. E. g. (cf. figure 2) a security service is provided to users (i.e. external entities) only

while security functions may be provided for external users, for internal subsystems / modules

or for both. A (complex) security function may comprise several (elementary) security

functions e.g. a digital signature service includes RSA key generation and RSA signature

generation. Even an elementary security function may be implemented by several security

mechanisms, e.g. RSA key generation includes a key generation algorithm calculating

corresponding private and public keys and uses the random number generation provided as

service by the security IC. A security mechanism may be part of the implementation of one or

more security functions or features, e.g. a random number generator provides random

numbers for the security service random number generation and clock randomization as side

channel countermeasure of the AES co-processor (cf. non-bypassability). A security

mechanism may be used for enforcement of self-protection only like hardware memory

encryption.

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 6/39 Version 2.1 July 2021

Note the CPU of the security IC is a SFR-supporting module of the security IC but

implements together with the arithmetic co-processor the RSA algorithm in the SFR-enforcing

module RSA signature. The arithmetic co-processor does not implement any security

functionality on the hardware level.

Figure2 Examples of security services, security functions, security mechanisms and

architectural countermeasures

0.2 Abbreviations
SFR Security Functional Requirement

SM Security Mechanism

SF Security Feature

SS Security Service

TOE Target of Evaluation

TSF TOE Security Functionality

TSS TOE Summary Specification from ST

3S Secure Sub-System

SoC System on a Chip

0.3 Editing convention of the document
The structure of the current document reflects both a descriptive approach (security features,

security functions / security functions, security mechanisms) and a demonstration of the

architecture soundness checking the TSF behavior under attacks.

The following scheme illustrate this rational.

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 7/39

There are several possibilities to structure the ARC document. The suggested structure of the

ARC document follows the generic security properties. The sequence of the chapters ñNon-

bypassabilityò and ñSelf-protectionò is a matter of taste of the editor. They could be arranged

also like this.

1. Security domains

2. Secure initialization

3. Non-bypassability

4. Self-protection

Here security features and security mechanisms enforcing architectural soundness may be

described in the chapter 2 to 4 as appropriate. The demonstration of non-bypassability and

self-protection may be more or less directly linked to the attack scenarios they are intended to

withstand.

The current document starts with an overview of security functions, features and mechanisms.

The chapter ñSecurity domainsò is based on the security target. If any security domains are

identified their description should be used in the following parts of the ARC document. The

enforcement of domain separation may be discussed in this chapter or later on depending on

the security architecture of the TOE.

The chapter ñSecure initializationò describes how the TSF is initialized. It describes the

stepwise activation of TSF from the ñdownò state (e.g. power-off or after reset) into an initial

secure state (i.e. when all parts of the TSF are operational) including possible temporary

deactivation and activation of TSF. This chapter considers the description of security domain

in the previous chapter. This chapter should describe and may include demonstration of

specific aspects of non-bypassability and self-protection during secure initialization.

The chapter ñNon-bypassabilityò demonstrates the security architecture of the TOE and the

TSF from the external interfaces down to the subsystems, the TSF modules and their

interaction. This provides a good overview on how the TSF works. But the ARC document

could also discuss the countermeasure against specific bypass attack scenarios like side

channel attacks.

The chapter ñSelf-protectionò demonstrates the ability of the TSF to protect itself from

manipulation from external entities that may result in changes to the TSF, so that it no longer

fulfills the SFRs. It relates to the integrity and management of the mechanisms that constitute

the TSF and to the integrity of TSF data. It discusses security mechanisms and their binding in

order to prevent direct attacks. But the ARC document could also discuss the countermeasures

against specific tamper attack scenarios like physical or logical manipulation.

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 8/39 Version 2.1 July 2021

The current document suggests a separate chapter discussing the intended TSF behavior under

attacks. This chapter discusses single or the whole security architectural properties from the

point of view of attack scenarios. This chapter is not intended as vulnerability analysis which

focuses on the search of vulnerabilities, their exploitation and calculation of necessary attack

potential.

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 9/39

Security Architecture (ADV_ARC) example

<Product Name Title>

Security Architecture description

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 10/39 Version 2.1 July 2021

1 Introduction

1.1 Purpose and Scope
This document contains the security architecture description for the <Product Name Title> as

required by the CC part 3, chapter 12.1 as family ADV_ARC.

The TOE is made of: <TOE short description>

The Architecture description concerns: <the TSF>

The Security Services used are given in: <TSS of underlying platform>

The Security Services provided are given in: <TSS of the Security Target of this TOE>

The ARC document describes the security architecture of the TOE. Smart cards and similar

devices are often evaluated in form of a composite evaluation [7]. A composite TOE is made

of

- a platform layer constituted by the security hardware XX or by the embedded software

YY running on the security hardware XX,

- an applicative layer constituted by the embedded software YY running on the security

hardware XX or by application ZZ executed by the embedded software YY.

The ARC document of the security hardware describes the security architecture of a TOE

providing unaided security functionality like physical protection, security services e.g.

symmetric cryptographic operations, random number generation, and supporting

functionality like arithmetic operations for asymmetric cryptographic operation. Similarly,

the ARC document of a platform comprising security hardware and embedded software

describes the TOE security architecture comprising of application independent security

functions like access control and security properties like enforcing confidentiality of data

which are more complex than those of the security hardware alone.

The security architecture of the composite product integrates the security services and

security properties provided by the platform to the application and those implemented by the

application itself. The security target of the platform describes the security functions and

services provided for the application. The security target may describe the platform security

architecture properties of self-protection and non-bypassability if it is compliant to

ASE_TSS.2. The guidance of the platform describes how the application may use the

security services of the platform in a secure way. But the ARC document of the platform is

not necessarily available to the developer of the composite product. Therefore, guidance of

the platform should support the application developer respective the composite product

evaluation sponsor to develop and describe the security architecture of the composite TOE.

The ARC document makes reference to the TSF description given for ADV_FSP,

ADV_TDS, ADV_IMP assurance classes. The FSP and TDS documentation focus on the

complete and accurate instantiation of the SFR but may also describe the mechanisms

implemented to enforce the security architecture properties. The IMP documentation makes

the entire implementation representation of the TSF available and provides a mapping of

(part or entire) TDS (and therefore of the instantiation of the SFR) to the implementation

representation. The ARC documentation may but is not required to map the security

architecture specific mechanisms (e.g. side channel countermeasures) to the implementation

representation of the TSF.

Secure Sub-Systems (3S) in SoC ï Integration

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 11/39

Though a 3S in SoC has many similarities in comparison to a SmartCard or similar devices,

there are distinct differences that have to be considered in the ARC.

Very similar to SmartCards, a 3S in SoC, depending on the supported functional packages,

provides unaided security functionality like physical protection, security services e.g.

symmetric cryptographic operations, random number generation, and supporting

functionality like arithmetic operations for asymmetric cryptographic operation. Similarly,

the ARC document of a 3S comprising security hardware, the TOE security architecture

comprising of host and composite software independent security functions like access

control and security properties like enforcing confidentiality of data which are more complex

than those of the 3S alone. The security target of the 3S gives a clear indication of the

security functions and services provided to environment of the 3S.

In difference to a SmartCard, a 3S is typically integrated into a hosting SoC. The integration,

design restrictions and the portability of evaluation results of an evaluated 3S to another

hosting SoC have to be clear to integrating parties, evaluators and developers and is covered

in the ETR for integration. The ADV_ARC will contain a rationale how the requirements as

outlined in the Integration guidance will be followed up by SoC. If this is the initial first

evaluation of the 3S in a SOC no ETR for Integration will be available.

A 3S may be utilized by a multitude of composite software, which may not be in control of

one developer. Therefore, the composite software have to be isolated from each other, and

also from the 3S. There is a mandatory vertical and horizontal separation of composite

software, which has to be explained in the ARC documentation.

The ADV_IMP, ADV_FSP and ADV_TDS description shall have an equal level of detail as

for SmartCards and similar devices.

Because of the distinct similarities, the additional requirements, explanations and

refinements for a 3S in SoC in comparison to SmartCards and similar devices are defined as

an addendum to the existing descriptions.

1.2 Documentation
For information and details beyond this document refer to the following specifications:

Å Functional specification according to CC part 3, ADV_FSP.x ref xxx

Å TOE design according to CC part 3, ADV_TDS.x ref xxx

Å Implementation representation according to CC part 3, ADV_IMP.x ref xxxx

Å Others é

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 12/39 Version 2.1 July 2021

2 Security services and Security mechanisms

Security functions describe what (in terms of action) the TSF, a subsystem, or a module does

in order to meet one or more SFR (i.e. subset of TOE security functionality). The external

visible security functions of the TSF are described in ADV_FSP. The security functions of

subsystems and modules are described as behaviour and through interfaces.

Security mechanisms describe how a security function (or its part) is implemented in order to

meet an SFR or to enforce architectural soundness. The security mechanisms implementing

security functions are described as purpose of modules in ADV_TDS.3 and higher. The

security mechanisms implemented in order to enforce architectural soundness are described in

the ARC document or references are given to ADV_TDS document in the ARC document.

Security mechanisms of this type may enforce domain separation and secure initialization,

prevent non-bypassability and protect the TSF from tampering.

Binding of the security functions and all security mechanisms is very important aspect of the

security architecture. E.g. a cryptographic key generation function may use a random number

generator as mechanism, but may also need mechanisms for separate representation of

generators for each security domain (cf. domain separation), generation of sufficient entropy

of the internal states (cf. secure initialization), side channel resistance (cf. non-bypassability)

and protection against tampering of the source of randomness or the internal state (cf. self-

protection) well as means enforcing its usage for selected cryptographic functions (cf. non-

bypassability).

The following chapter identifies example security functions and security mechanisms for the

later description of domain separation and secure initialization and demonstration of non-

bypassability and self-protection. Note the ARC document for a concrete TOE shall provide

or reference to a description of the security functions and mechanisms more detailed than in

the current template document.

2.1 Security Services provided by the underlying platform
In the case of a composite TOE the developer provides an overview of the TOE Summary

Specification (TSS) defined in the Security Target of the underlying layer in this paragraph.

Smart security devices are generally based on an underlying certified platform (security IC or

secure IC with embedded operating system) which provides its certified security services to

enforce the global security of the product. Those essential services referring to security

mechanisms of the underlying platform are recalled if necessary in this section as a short

description focusing on properties enforced. The purpose is to ensure consistency of the

overall document. It is therefore not recommended to list all underlying security services but

only those that are used by the top layer.

Those mechanisms are already certified and generally described in the related IC datasheet or

any other document provided to the TOE developer.

Note the application may also use and rely on correctness of functions of underlying platform

which are not provided as security services and are not in the scope of the evaluation (e. g.

arithmetic operations of the CPU used for cryptographic calculations).

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 13/39

The underlying platform provides the following Security Services (SS):

<Example> Security IC as underlying platform
SS.IC.Hardware cryptographic computation

Security IC performs cryptographic operations according to FCS_COP.1/XXX (e.g. two-key

Triple-DES or AES encryption and decryption) ensuring confidentiality of the used

cryptographic key and operated data (see IC datasheet chapter x).

SS.IC.Random number generation

Security IC provides unbiased and independent random values generated by a physical

random number generator for use in cryptographic key generation, algorithms and protocols

(see IC datasheet chapter x). The security IC is delivered with a RNG self-test software library

detecting non-tolerable statistical defects of the generated random numbers due to aging of the

entropy source.

SS.IC.Management of physical memory

Security IC provides Memory Management Service controlling access to memory areas and

ensuring data storage isolation (see IC datasheet chapter x). Code running in System operating

mode has full access to all EEPROM and RAM memory areas, special function registers and

the management function itself. Code executed in Normal mode has access to defined

EEPROM and RAM memories only.

SS.IC.Exception handling

Security IC provides exception handling initiated by and depending on by dedicated reason.

The function XXX initializes and handles the exception.

SS.IC.Control of operating conditions

Security IC provides stable execution of the code and provision of the security services in the

limit of defined operating conditions. Outside the defined operating conditions the security IC

enters a fail secure state (internal reset). The operating conditions are described in the IC

datasheet chapter x.

<this is only a partial list with some examples of SSs>

<Example> Security IC with IC Dedicated Software
SS.IC.Generic cryptographic library

The underlying platform comprise a security IC and a cryptographic library providing

certified RSA and AES algorithms (see platform datasheet chapter x). The TOE under

evaluation uses the AES library part only (see TDS documentation x chapter y).

<this is only a partial list with one example of SS>

<Example> Secure software underlaying platform
SS.SWPL.Secure object

The underlying platform provides containers dedicated to store sensitive data. These

containers ensure protection of integrity of the stored data (see OS datasheet chapter x).

SS.SWPL.Secure erasure

The underlying platform provides a secure erasure of sensitive data which ensures that all

related memory cells are overwritten, protecting against data leakage (see OS datasheet

chapter x).

<this is only a partial list with some examples of SSs>

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 14/39 Version 2.1 July 2021

2.2 Security mechanisms of the TSF
This chapter includes a list of the security mechanisms of the TSF and a description or a

reference to the description in the specific ADV_TDS document. How they are linked

together (and with the Security Services of the underlying Platform) to prevent attacks and

protect the TSF is described in chapters 5 and 7.

For the convenience of the reader descriptions that have been included here (with the

references to other ADV documents added when possible) where found appropriate.

This section describes the security mechanisms provided by the TSF. In case of composite

TOE these descriptions can make reference to the Security Services provided by the

underlying platform to explain their behaviour.

Some aspects of the Security mechanisms are already described in ADV documents:

Å FSP provides the TSFI description. The TSFI may or may not describe the external

behavior of a security mechanisms A link to the associated description is in this case

very relevant to avoid rewriting a full description.

Ex: PIN management, secure protocol, access controlé

Å TDS provides a more detailed description of the design of the product. Some security

mechanisms dedicated to ensure correct and secure execution could be described here.

A link to the associated description is in this case very relevant to avoid rewriting a

full description.

Ex: a function providing a security check, é

The security mechanisms enforcing security properties of the TSF (like domain separation,

secure initialization and non-bypassability) and self-protection but not directly implementing

SFR may be described in the ARC documentation or in TDS and referenced in the ARC

documentation.

Some mechanisms protecting the TOE are spread all over the code and possibly only at a

code level. They must be described at a level consistent with the ADV_IMP, but only a

generic description of the principle is provided here.

The other parts of the ARC document shall describe how and where they are used in order to

allow for analysis of completeness. Reference would be made to these descriptions in the

following chapters of this document.

<Example> Security Mechanisms of the Security IC

Special modules SM.IC.TDES co-processor

Security IC implements a hardware cryptographic co-processor performing two-key Triple-

DES encryption and decryption. The co-processor implements non-bypassability

countermeasures against timing attacks (i.e. the time of execution is independent on the key,

the data and encryption/decryption operation), power analysis and emanation analysis.

SM.IC.AES co-processor

Security IC implements a hardware cryptographic co-processor performing AES encryption

and decryption with key length 128 bits, and 256 bits. The co-processor implements non-

bypassability countermeasures against timing attacks (i.e. the time of execution is independent

on the key, the data and encryption/decryption operation), power analysis and emanation

analysis.

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 15/39

SM.IC.Physical RNG

Security IC implements a physical random number generator compliant to AIS31 (see IC

datasheet chapter x) generating unbiased and independent random numbers. The RNG

implements selfprotection mechanisms detecting failure and non-tolerable statistical defects of

the entropy source. The RNG self-test software library is integrated in the TOE under

evaluation (cf. TDS document x chapter xx and IMP document y part yy). This software is not

side-channel resistant and therefore the tested random numbers must not be used for other

purposes than testing.

SM.IC.Memory Management Unit

Security IC implements a Memory Management Unit (see IC datasheet chapter x). Access

attempts outside the defined memory areas or to special function registers cause exception x

(see IC datasheet chapter y).

Countermeasures enforcing Self-Protection- Sensors

The device has several types of exception sensors monitoring its extrinsic operating

parameters such as voltage, frequency, temperature, and light, which are totally independent

from each other and from the other functionality of the TOE. The exception sensors guarantee

the device to be operated under the specified conditions. In case specified operating

conditions are not fulfilled the sensors generate an internal device reset.

The sensors can be enabled or disabled in order to allow testing of the device functions

beyond the sensor threshold. By testing devices in production outside the sensor limit the

correct function of the device and its sensors at the sensor limits is guaranteed. After delivery

the hardware does not allow the embedded software to interfere with the sensors.SM.IC.Low

and High Frequency Sensors

The Smart Card Controller cannot be operated at low clock frequency (fCLK < fCLK(LFS),

LFS=Low Frequency Sensor). At low frequencies a permanent RESET is performed. If the

clock frequency raises above the high frequency limit (fCLK > fCLK(HFS), HFS=High Frequency

Sensor), reset will be executed as well.

SM.IC.Voltage Sensors

The Smart Card Controller includes a power-on-reset circuitry controlling the dedicated

power-on and power-off sequence.

When the voltage VDD < VDD(LVS) (LVS=Low VDD! Sensor) or VDD > VDD(HVS) (HVS=High

VDDs Sensor) a reset will be executed.

SM.IC.Temperature Error Sensor

The device supplies a temperature error sensor monitoring the operating temperature. If the

temperature drops below T<T(LTS) (LTS=Low Temperature Sensor) or if the temperature

raises above T>T(HTS) (HTS=High Temperature Sensor) an internal reset will be executed.

SM.IC.Light Sensor

There are a number of light sensors located on the chip that are designed in a way that assures

normal device functionality under specified conditions, but invokes a sensor reset, if the

device is exposed to strong light emitters.

Countermeasures enforcing Self-Protection - Detectors SM.IC.Active Security Routing

(Description of the security routing)

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 16/39 Version 2.1 July 2021

SM.IC.Parity checks

The security IC implements parity checks of data

(1) stored and read from EEPROM and RAM

(2) transferred on bus between ROM and CPU, EEPROM and CPU, RAM and

CPU, <é> as self-protection mechanisms.

SM.IC.Reset

The security IC implements internal reset mechanism setting of the program counter to 0.

Countermeasures enforcing non_bypassability SM.IC.Desynchro HW

The device features a desynchronization mechanism, by adding fake clock cycles and jitter.

This feature is enabled by setting the register XXX to following value: XXX. Such

countermeasures aim at disturbing an accurate synchronization; it is activated when <to be

specified><reference to

AGD_OPE>.

SM.IC.Filter

A filter is applied to the current flow in such a way that the power consumption of the chip is

smoothed during execution of critical operation.

Further Countermeasures

For functionality, which contribute to the security of the TOE but is not described as a

Security Mechanism in the ADV documentation, a detailed description of the functionality of

the security mechanism can be given in the following. (The following description serves as an

example.)

SM.IC.Arithmetic co-processor

The security IC implements an arithmetic co-processor for calculation of sum, product and

square of two operands modulo a number (see IC datasheet chapter x). The execution time of

the arithmetic operation does not depend on the operands and the modulus. The TOE under

evaluation implements <all, partly> the countermeasures described in the security IC security

guidance x chapter y, cf. TDS documentation chapter z.

<this is only a partial list with some examples of SMs>

<Example> Security mechanisms of secure software platform

Global security

SM.SWPL.Redundancy

It consists of executing the same operation twice to check that both of them give a coherent

result. The second operation can also be different, by being for instance an inverse

computation.

SM.SWPL.Shadow Memory for NVM write parameter

The security mechanism stores the address and length information for the NVM write

parameter. Detailed description of the implementation is given in x.

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 17/39

SM.SWPL.Time-constant execution

Loops and other control structures are designed in such a way that execution time is

independent of the associated control value if this information is considered as sensitive. For

instance a loop computation on an array is performed from the first to the last element even if

the expected result is known in the meantime.

SM.SWPL.Desynchro SW

To disturb any attacks requiring an accurate synchronisation, some fake code is executed at

random. This functionality is ensured by the function XXX and activated by calling the

function with the parameters xxx

SM.SWPL.Masking

To hide sensitive values during their manipulation, masking data techniques prevent against

any estimation of the concerned values. It consists of applying a mask to a value, performing

computation with this masked value and inferring the result for the sensitive ï unmasked ï

value. In this case, no computation is performed on the sensitive value and no leakage via side

channel can be exploited

Security Services provided by the TOE

These mechanisms are building blocks used to build security functionality provided by the

TOE. They are generally internal to TSF modules and therefore often described in the TDS.

Nevertheless if the TOE is a platform for composite certification their external behaviour is

more probably described in the FSP since these mechanisms will be provided to the final

developer.

SM.SWPL.State machine

The sequences of commands are checked to avoid bypassing of steps. If, at the beginning of

each command processing, a command sequence isnôt correct then the state machine returns

an error. The current state is protected using SS.IC.Control of operating conditions (see

ADV_TDS §x.x).

SM.SWPL.Transaction

Atomic transaction ensures the integrity of data stored in persistent memory even in case of

power loss or perturbation. When opening a transaction context (see Transaction_open in

ADV_TDS §x.x) an unused persistent memory area is allocated for the data to be stored. The

transaction writes this data in the reserved memory area (see Transaction_write in ADV_TDS

§x.x). If the transaction updates a data object then the original data is kept valid in the

persistent memory until the write operation is finished, and the old data is erased and the

persistent memory area is deallocated after the write operation. The transaction is finalized by

building a valid data object containing the successfully written data (see Transaction_finalise

in ADV_TDS §x.x).

SM.SWPL.File integrity

Files created are composed of a data section and a control section. This control is a MAC

computed over the data of the file using SS.IC.Hardware cryptographic computation. This

MAC is synchronized with the data section using SM.SWPL.Masking (see ADV_TDS §x.x

and ADV_FSP

§x.x).

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 18/39 Version 2.1 July 2021

SM.SWPL.Secure erasure

The underlying platform provides a secure erasure of sensitive data which ensures that all

related memory cells are overwritten, protecting against data leakage (see OS datasheet

chapter x).

Functional security

These mechanisms implementing security functionalities provided by the TOE actually allow

describing secure initialisation and discussing non-bypassing, self-protection or domain

separation but are not provided to the final developer in case the TOE is a platform. Their

external behaviour will probably be described in the FSP.

SM.SWPL.Authentication tries mechanism protection

Usage of the TOE is allowed after a successful authentication. The number of authentication

attempts is limited to a maximum value. This mechanism is designed to ensure that the value

cannot be modified or disclosed by an attacker by using e.g SS.IC.Exception handling ,

SS.IC.Control of operating conditions, SM.SWPL.Transaction (see ADV_FSP §x.x).

SM.SWPL.Access control protection

This mechanism is designed to detect abnormal operations that might indicate an attack by an

external entity by checking integrity of data accessed (using e.g. SM.SWPL.File integrity,

SS.IC.Management of physical memory SS.IC.Exception handling,) and verifying access

rights (see ADV_FSP §x.x).

SM.SWPL.Secure loading

Loading of keys is based on a secure channel using 3DES (SS.IC.Hardware cryptographic

computation) and AES (SS.IC+CL.Generic cryptographic library)and session keys based on a

random value (SS.IC.Random number generation) When loaded on the TOE, keys are stored

in a secure container (SS.IC.Management of physical memory) (see ADV_FSP §x.x).

SM.SWPL.Unblocking

TOE is initially blocked and need a first authentication (based on SS.IC+CL.Generic

cryptographic library) to unblock it and authorize TOE usage (see ADV_FSP §x.x).

<this is only a partial list with some examples of SMs>

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 19/39

3 Security domain separation

In this chapter it is explained what the different kinds of domains supported by the TSF are,

how they are defined (i.e. what resources are allocated to each domain), how no resources are

left unprotected, and how the domains are kept separated so that active entities in one domain

cannot tamper with resources in another domain.

Security domains for Security ICs

For Security ICs it can be assumed that security domains exist such as Test Mode and

Operational Mode (or similar). In Security Targets compliant to BSI-PP-0084- 2014, these are

defined through FMT_LIM.2. Implementation of these security domains is considered in other

ADV families and is not repeated here.

Other security domains might exist, for example due to an implemented Memory Management

Unit. In this case they should be described in the Security Target by Security Functional

Requirements (SFRs). If a security domain is not explicitly described within the Security

Target, it has to be described here.

<Example> Security domains for Security ICs ï Test domain and Operational

domain

The SFR FMT_LIM.2 defined in BSI-PP-0084-2014 separates the Test domain and the

Operational domain.

Á In the Test domain the dedicated software of the TOE is available e.g. for tests of the TSF

by the manufacturer. The Embedded software is not available because it is intended for

the operational use.

Á In the Operational domain the embedded software is available for execution by the user

but dedicated software is not available. That is because the embedded software may

violate the security policy of the user e.g. by reading, calculating and reporting checksums

over the physical memory areas including secrets.

Note if the dedicated software of the TOE is available but with limited capability this will be

dealt under non-bypassability (cf. FMT_LIM.1 in BSI-PP-0084-2014).

<Example> Security domains for ICs ï System mode and User mode

The memory management unit (SM.IC.Memory Management Unit) allows enforcement of

- System mode of program execution with access to all memory areas and security

functional registers including the management registers of the MMU,

- User mode of program execution with limited access to memory areas and no access to

security functional registers including the management registers of the MMU,

- Transition between these modes by exception handling.

Note that the Security IC maintains these two security domain while the operating system

running on this platform may support further refined security domains within the user mode.

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 20/39 Version 2.1 July 2021

Security domains for composite smart cards

Untrusted entities and resources are defined by the limits and content of the TOE. For example:

In the case of the TOE being an ñintegrated productò, where the Security IC Embedded Software

consists of native code that implements both OS and application behaviour without demarcation

between them, there are no domains because all actions are brokered by the TOE. The

application is performed by the TSF that maintains only data structure to keep userôs data

separated. (cf. basic configuration in [11])

In the case of the TOE being a ñlayered productò where the Security IC Embedded Software

consists of an ñOS Layerò, potentially with integrated application behaviour, and an

ñApplication Layerò on top of it, there are two domains. The OS provides a separation

mechanism between itself and the Application Layer as well as services to the Application

Layer. If the TOE does not contain application code in the ñApplication Layerò the domain

separation exists as a service-offer by the platform to a composite product built on it. (cf.

extended configuration in [11])

In the case of the TOE being a multi-applicative platform, applications are untrusted entities

potentially active. An example is the JavaCard Platform described in the JavaCard System PP.

The TOE is responsible for card resource management and applet execution. Applet isolation is

achieved through the applet firewall mechanism that confines an applet to its own designated

memory area. Thus each applet is prevented from accessing fields and operations of objects

owned by other applets or data owned by the TOE itself.

In the case where the TOE includes application(s) resident on such a multi-applicative platform

the evaluated and non-evaluated applications of the product are maintained separately thanks to

the service offered by the platform. The capability of post issuance downloading (ñopen

platformò) does not introduce any differences in terms of domain separation.

Other structures can be found that mix the previous cases, for example a product that is a hybrid

with respect to a JavaCard platform and an isolated applicative C-code.

The following figures illustrate these various cases.

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 21/39

For cases where the TOE depends on the IC or a platform to play a role in domain separation,

that sharing of roles must be made clear by referencing the IC or platform security services.

For the composite smart card product, there are also different life-cycle modes as initialization,

personalization or application mode. If these modes involve interfaces and code execution that

are part of the TOE they can support different sets of domains with different mechanisms for

domain separation.

When the domains and domain separation are described in the Security Target by Security

Functional Requirements they will not be described in further details as implementation of these

security domains is considered in other ADV families.

If the security domains are not explicitly described within the Security Target, they have to be

described here.

This description shall take into account all SFRs claimed by the TOE. That is to say the access to the

resources allocated to a domain must be covered by SFRs and SFRs corresponding to a function of

resource control must correspond to a domain separation mechanism.

The document ñApplication of Attack Potential to Smart Cardsò lists attacks specifically relevant

for domain separation:

- Ill -formed Java Card Applets

- Violation of firewall between applets

<Example> Security domains for a Java Card smart card - Applets

Each applet or applet package loaded on the TOE can be considered as residing and

performing in a security domain; separation between them is controlled through the firewall.

The JavaCard VM, associated execution piles running on behalf of this applet, the parts of

memory that contain the byte-codes, and the objects belonging to the applet are the resources

allocated to the security

domain of this applet.

Indeed, the TSF with the firewall controls information flow at runtime. It controls object

sharing between different applet instances, and between applet instances and the Java Card

RE.

During the execution of an applet, the Java Card VM keeps track of the applet instance that is

currently performing an action. This information is known as the currently active context.

Two kinds of contexts are considered: the applet instances context and the Java Card RE

context, which has special privileges for accessing objects. No distinction is made between

instances of applets defined in the same package: all of them belong to the same active

context and therefore to the same security domain. In contrast, instances of applets defined in

different packages belong to different contexts and therefore to different security domains.

Each object belongs to the context (defined as a security domain) that was active when the

object was allocated. Initially, when the Java Card VM is launched, the context corresponding

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 22/39 Version 2.1 July 2021

to the applet instance selected for execution becomes the first active context. Each time an

instance method is invoked on an object, a context switch is performed, and the owner of the

object becomes the new active context. In contrast, the invocation of a static method does not

entail a context switch. Before executing a bytecode that accesses an object, the object's

owner is checked against the currently active context in order to determine if access is

allowed. Access is determined by the firewall access control rules specified in the Y of

document X. Those rules enable controlled sharing of objects through interface methods, that

the object's owner explicitly exports to other applet instances. Put differently the object's

owner explicitly accepts to share these objects upon request of other applet instances invoking

the interface method.

Security domains for 3S in SoC

In difference to a traditional security IC, several Composite Software can run on the 3S at

the same time. There may be e.g. several OS / Composite Software that need separation. The

Composite Software is not able to protect itself from other Composite Software, therefore

the platform has to provide the necessary means to enforce Security Domain Separation.

There has to be some control mechanism provided by the TSF, as described in [13] by the

Domain Separation. Composite Software shall not be allowed to compromise the TSF, even

if only one is present.

Figure 3 A SoC (light grey) with 3S (dark grey) and different composite software (light blue) in external memory.

In this chapter, it is required to provide a description on how TSF defines security domains

and manages them in order:

- to perform access control to avoid any unauthorized access to TSF resources (code and

data) by any other entity running on TSF.

- to perform access control to composite SW to avoid any unauthorized access to composite

SW (code and data) from TSF or any entity running on TSF.

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 23/39

This covers two topics: Self-protection (protecting the 3S against a maliciously acting

Composite Software) and security domain separation (protecting Composite Software

running in parallel from each other).

<Example> Security domains for 3S ï Composite Software

Each composite software loaded on the 3S can be considered as residing and performing in a

security domain; separation between them is controlled through a sandbox, establishing

isolation of the composite software from the 3S (horizontal) and other composite software

(vertical).

Furthermore, the 3S ensures that any memory containing TSF code is not shared between

composite software.

During the execution of a composite software the 3S tracks the activity of the active

composite software that is currently performing an action. This information allows the 3S to

govern the activity and to ensure that no composite software acts without notice of the 3S.

The 3S provides dedicated interfaces to the composite software to be able to offer data and/or

code to other composite software. The other composite software has to actively choose to use

this data and/or code.

The 3S acts as an arbiter, e.g. each peripheral has an assigned active owner which is tracked

by the 3S and access has to be explicitly granted by the 3S. A dedicated secure release

procedure ensures that all assets that might be used in conjunction with a peripheral (keys for

a cryptographic co-processor, buffers containing intermediate results etc.) are erased securely

before any other owner may interact with the peripheral.

<Example> Security domains for 3S ï External Memory

The 3S utilises external memory in addition to the internal memory, which is not under

direct control of the 3S. The 3S therefore is responsible for the protection of the

communication with the external memory, validation of content and protection against

tampering with externally stored data/code.

All relevant content of the external memory is stored in encrypted form (AES256). Each

image is encrypted with its own unique key. The 3S is responsible for the secure handling of

the keys.

Figure 4: Principle of vertical and horizontal separation provided by

the 3S (grey) of composite software (light blue)

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Page 24/39 Version 2.1 July 2021

To ensure that the correct and up-to-date images are loaded, hashes (SHA3) of the respective

image, which are stored in the internal memory of the 3S, are compared with the hashes of

the images which are loaded. Execution of an image is only possible after successful

validation of the respective image. The hashes of the images are updated before and after

each authorised modification the NVM and therefore ensuring that no old data will be

loaded. Furthermore, this enables the 3S to ensure that the content of the NVM was only

altered by authorised modifications. Any detection of altered hashed will lead to the

conclusion, that the image or NVM are compromised.

To avoid replay attacks the 3S implements a counter with 4 tries, that is raised on each failed

attempt to validate the hash of a known image. If the counter reaches its limit the image is

considered as compromised.

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

July 2021 Version 2.1 Page 25/39

4 Initialization / start-up

The developer describes the start-up sequence with reference to the code modules that are

executed to perform the initialization function. It points out the functions that are not part of

the TSF and then not described yet in ADV_TDS.

The description focuses on the overall strategy, how the TSF is initialized in a secure way

and all security features initialized during the start-up (e.g. backup recovery, sensitive areas

integrity check, fault counters é).

For the functions that are not described in ADV_TDS, it is explained why they are not

reachable when the TSF is in the secure operational state or if they are reachable why their

external interfaces cannot be used to tamper with the TSF.

The description of how the initialization process guarantees the TSF integrity at the end and

how it is itself protected against modification is part of the chapter ñSelf-Protectionò.

However for clarity it could be described here and referenced in this chapter.

