Security Architecture requirements (ADV_ARC)
for smart cards and ssimilar devices

Appendix 1

Verson 2.0
January 2012

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

This page isintentionally left blank

Page 2/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

Table of contents

Contents

0 PO AL 4
0.1 (€1 (01151 U oAU P PP PPPPPPPPPPPPPPPP 4
0.2 ADDIEVIATIONS ... 6
0.3 Editing convention of the dOCUMENt...........ccoooiiiiiiiii s 6
1 INEFOAUCTION L.uetiiii s 10
1.1 PUIPOSE @Nd SCOPE ..o 10
1.2 DOCUMENTALION ... 11
2 Security services and Security mechaniSms.............eeevvvvevieeeeeeeeeeennee. 12
2.1 Security Services provided by the underlying platform.............cccoovveee.e. 12
2.2 Security mechanisms of the TSF ... 14
3 Security domain SEParationeeeeeiiiiiiiiiiiiiiiiieiiieieeeeeeeee e 19
4 INItIAlIZAtION / STAIT-UP ...eeeiiiiiiiiii s 23
5 Self PrOtECTION ..ciiiiiiiiiiiiiiieeeeee ettt 27
5.1 Self protection and initialiSation ProCesseuvveeveeeiiieiieiieiiiiieiiieeene. 27
5.2 Self protection and low function MOdeccevvviiiiiiiiiiiiiiiiiiiiiiieeiieeee, 27
5.3 Self protection in full operational state of the TSF.............oovvviiiiiiiiiinnnee. 27
6 NON-DYPASSADIITY ... 29
6.1 TSF @lWayS INVOKEd.........cuuiiiiiiiiiiiiiiiiiiieeieiieeee ettt eeeeeeees 30
6.2 Side ChANNEI ..ot 30
7 TOE protection in presence of attacksccccoevvviiiiiiiiiciiiiin e, 32
8 BibDlIOGrapny .o 34

January 2012 Version 2.0 Page 3/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

0 Preface

This document is the informative part of the Joint Interpretation Library document “Security
Architecture requirements (ADV_ARC) for smart cardsand similar devices’. It containsexamples
for the type of information and level of detail to be provided in the ARC document.

The preface of the document suggests additional terminology, abbreviations and examples of
document structure useful for the ARC document. The main part of this document is at once:

- atemplate of the ADV_ARC document (printed in normal font)
- an explanation that can help in the understanding of the mandatory part (in box)

- a collection of examples (prefixed with the key word <Example> and ended by <>)

0.1 Glossary

This section suggests some terminology in order to help the developer describing the security
architecture of the TOE. While the CC terminology (cf. [1] and [2]) focuses on description of
security requirements these additional terms are intended for detailed description of thedesignand
the implementation of the security architecture.

Security function —description what (interms of action) the TSF, a subsystem, or amodule does
in order to meet one or more SFR (i.e. it isa subset of TOE security functionality).

Security property —invariant property of the TOE, the TSF, a subsystem or amodulerelated to
security. The generic security property of the TOE is non-bypassability of the TSF. The generic
security properties of the TSF are domain separation, non-bypassability, secureinitiaization, self-
protection as required by family ADV_ARC.

Security feature - combination of security functionsimplemented and security propertiesensured
on level of TOE, TSF, subsystem and module in order to prevent one or more attacks. Often the
composition of a security feature only becomes clear when considering a specific attack path
during vulnerability analysis.

Security mechanism - description how a security function (or its part) isimplemented in order to
meet an SFR or to enforce architectural soundness. The level of details is defined by purpose of
modules (cf. component ADV_TDS.3 and higher).

Countermeasure — generic word, al means to protect the assets against the threats.

Architectural countermeasure — description how a security property of the TOE, the TSF,
subsystems or modulesisimplemented or enforced by other means than functions or mechanisms.
E.g. the TSF of a security integrated circuit implements light sensors (mechanism) to protect
sengitive modules against light attacks. The physical layout (architectural countermeasure) —
besides many other factors — exercises an influence on the effectiveness of this protection
depending on but not changing the security mechanism of the light sensors.

Page 4/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

Security service - acombination of security functions provided for the user. As an example the
Security 1C provides security servicesfor the Security |C Embedded Software (e.g. cryptographic
operations, random number generation). If the TOE isacomposite TOE, the “platform” provides
security services to the “application” (following the definitions of Supporting document CCDB
2007-09-001).

Note the term “security measure” means technical and organizational measures that ensure the
security of the development environment and production environment; therefore security measures
do pertain to the TOE but are not part of the TOE or subject of the ARC document.

Target of Evaluation
(TOE)

v
Security objective for TOE

l

Security functionality Security functional Generic security properties
— fequirement . .
{TSF} (SFR) {of the security architecture)

Security function Security property
{of TSF, subsystem, module) {hold by TOE, TSF, subsystem, module)

\“‘\‘/__’/

Security feature

= combination of functions and propetties
implemented on level of TOE, TSF.
subsystem. module to advert attack

L 2 ¥
Security mechanism Architectural countermeasure
= how a security function = how security propenty
is implemented in order is implemented or enforced
to meet SFR or to enforce by architectural means
architectural soundness {not necessarily by a mechanism)

Figure 1 Suggested terms for security architecture description
The text printed initalic in figure 1 is not contained in CC / CEM but introduced here.

Note these terms will be used in the concrete context of the TOE, the TSF, the subsystems or
modules. E. g. (cf. figure 2) asecurity serviceis provided to users(i.e. external entities) only while
security functions may be provided for external users, for internal subsystems/ modules or for
both. A (complex) security function may comprise several (elementary) security functionse.g. a
digital signature service includes RSA key generation and RSA signature generation. Even an
elementary security function may be implemented by several security mechanisms, e.g. RSA key
generation includes a key generation algorithm calculating corresponding private and public keys
and uses the random number generation provided as service by the security 1C. A security
mechanism may be part of the implementation of one or more security functionsor features, eg. a
random number generator provides random numbers for the security service random number
generation and clock randomization as side channel countermeasure of the AES co-processor (cf.
non-bypassability). A security mechanism may be used for enforcement of self-protectiononly like
hardware memory encryption.

January 2012 Version 2.0 Page 5/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Note the CPU of the security I C is a SFR-supporting module of the security 1C but implements
together with the arithmetic co-processor the RSA agorithm in the SFR-enforcing module RSA
signature. The arithmetic co-processor does not implement any security functionality on the
hardware level.

>

Composite TOE: Smartcard

S8: Digital signature

58: Secure
Smartcard tra;asact‘en
aperating
system 4 - / vlinging
i y
1
1 5 :% ‘\
o i -
Plagorm TOE H S8 Eviron, 88 RN 55 AES \\
Security IC control generation 1
CPU Arithmetic

Cco-processor

'DRNG. S
Clock randomization

Memory encryption -

Figure2 Examples of security services, security functions, security mechanisms and architectural
countermeasures

0.2 Abbreviations

SFR Security Functional Requirement

SM Security Mechanism

SF Security Feature

SS Security Service

TOE Target of Evaluation

TSF TOE Security Functionality

TSS TOE Summary Specification from ST
0.3 Editing convention of the document

The structure of the current document reflects both a descriptive approach (security features,
security functions / security functions, security mechanisms) and a demonstration of the
architecture soundness checking the TSF behavior under attacks.

The following scheme illustrate this rational.

Page 6/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

Chapter7 Chapterb5 &6 Section2.1 Section2.2

—3> $8.1
Attack path S8.3
> SF1 <
Altack path - SM.2
Attack path e s SF 2 é

> SM.4

There are severa possihilities to structure the ARC document. The suggested structure of the
ARC document follows the generic security properties. The sequence of the chapters “Non-
bypassahility” and “ Self-protection” isamatter of taste of the editor. They could be arranged also
like this.

1. Security domains

2. Secureinitialization
3. Non-bypassahility

4. Self-protection

Here security features and security mechanisms enforcing architectural soundness may be
described in the chapter 2 to 4 as appropriate. The demonstration of non-bypassability and self-
protection may be more or less directly linked to the attack scenarios they are intended to
withstand.

The current document starts with an overview of security functions, featuresand mechanisms. The
chapter “ Security domains’ is based on the security target. If any security domains are identified
their description should be used inthe following parts of the ARC document. The enforcement of
domain separation may be discussed in this chapter or later on depending on the security
architecture of the TOE.

The chapter “Secureinitialization” describes how the TSF isinitialized. It describesthe stepwise
activation of TSF fromthe“down” state (e.g. power-off or after reset) into an initial secure state
(i.e. when all parts of the TSF are operational) including possible temporary deactivation and
activation of TSF. This chapter considers the description of security domain in the previous
chapter. This chapter should describe and may include demonstration of specific aspects of non-
bypassahility and self-protection during secure initiaization.

The chapter “Non-bypassability” demonstrates the security architecture of the TOE and the TSF
from the external interfaces down to the subsystems, the TSF modules and their interaction. This
provides agood overview on how the TSF works. But the ARC document could also discussthe
countermeasure against specific bypass attack scenarios like side channel attacks.

The chapter “Self-protection” demonstrates the ability of the TSF to protect itself from
manipulation from external entities that may result in changes to the TSF, so that it no longer
fulfillsthe SFRs. It relatesto the integrity and management of the mechanismsthat constitute the
TSF and to the integrity of TSF data. It discusses security mechanisms and their binding in order
to prevent direct attacks. But the ARC document could also discuss the countermeasures against
specific tamper attack scenarios like physical or logical manipulation.

January 2012 Version 2.0 Page 7/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

The current document suggests a separate chapter discussing the intended TSF behavior under
attacks. This chapter discusses single or the whole security architectural propertiesfrom the point
of view of attack scenarios. This chapter isnot intended as vulnerability analysiswhich focuseson
the search of vulnerahilities, their exploitation and calculation of necessary attack potential.

Page 8/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

Security Architecture (ADV_ARC) example
<Product Name Title>
Security Architecture description

January 2012 Version 2.0 Page 9/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

1 Introduction

1.1 Purpose and Scope

This document contains the security architecture description for the <Product Name Title> as
reguired by the CC part 3, chapter 12.1 as family ADV_ARC.

The TOE is made of: <TOE short description>
The Architecture description concerns. <the TSF>
The Security Services used are given in: <TSS of underlying platform>

The Security Services provided are given in: <TSS of the Security Target of this TOE>

The ARC document describes the security architecture of the TOE. Smart cards and similar
devices are often evaluated in form of acomposite evaluation [7]. A composite TOE is made of

- aplatform layer constituted by the security hardware XX or by the embedded software
Y'Y running on the security hardware XX,

- an applicative layer congtituted by the embedded software Y'Y running on the security
hardware XX or by application ZZ executed by the embedded software Y .

The ARC document of the security hardware describes the security architecture of a TOE
providing unaided security functionality like physical protection, security servicese.g. symmetric
cryptographic operations, random number generation, and supporting functionality like arithmetic
operations for asymmetric cryptographic operation. Similarly, the ARC document of aplatform
comprising security hardware and embedded software describes the TOE security architecture
comprising of application independent security functions like access control and security
propertieslike enforcing confidentiality of datawhich are more complex than those of the security
hardware alone.

The security architecture of the composite product integrates the security services and security
properties provided by the platform to the application and those implemented by the application
itself. The security target of the platform describes the security functions and services provided
for the application. The security target may describe the platform security architecture properties
of self-protection and non-bypassability if it is compliant to ASE_TSS.2. The guidance of the
platform describes how the application may use the security services of the platformin a secure
way. But the ARC document of the platform is not necessarily available to the developer of the
composite product. Therefore, guidance of the platform should support the application developer
respective the composite product evaluation sponsor to develop and describe the security
architecture of the composite TOE.

The ARC document makes reference to the TSF description given for ADV_FSP, ADV_TDS,
ADV_IMP assurance classes. The FSP and TDS documentation focus on the complete and
accurate instantiation of the SFR but may also describe the mechanisms implemented to enforce
the security architecture properties. The IMP documentation makes the entire implementation
representation of the TSF available and provides amapping of (part or entire) TDS (and therefore
of the instantiation of the SFR) to the implementation representation. The ARC documentation
may but is not required to map the security architecture specific mechanisms (e.g. side channel
countermeasures) to the implementation representation of the TSF.

Page 10/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

1.2 Documentation

For information and details beyond this document refer to the following specifications:
Functional specification according to CC part 3, ADV_FSP.x ref xxx
TOE design according to CC part 3, ADV_TDS.x ref xxx
Implementation representation according to CC part 3, ADV_IMP.x ref xxxx
Others ...

January 2012 Version 2.0 Page 11/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

2 Security services and Security mechanisms

Security functions describe what (in terms of action) the TSF, a subsystem, or amodule doesin
order to meet one or more SFR (i.e. subset of TOE security functionality). The external visible
security functions of the TSF are described in ADV_FSP. The security functions of subsystems
and modules are described as behaviour and through interfaces.

Security mechanisms describe how a security function (or itspart) isimplemented inorder to meet
an SFR or to enforce architectural soundness. The security mechanisms implementing security
functions are described as purpose of modules in ADV_TDS.3 and higher. The security
mechanisms implemented in order to enforce architectural soundness are described in the ARC
document or references are given to ADV_TDS document in the ARC document. Security
mechanisms of this type may enforce domain separation and secure initiaization, prevent non-
bypassahility and protect the TSF from tampering.

Binding of the security functions and all security mechanisms is very important aspect of the
security architecture. E.g. a cryptographic key generation function may use a random number
generator as mechanism, but may also need mechanismsfor separate representation of generators
for each security domain (cf. domain separation), generation of sufficient entropy of the internal
states (cf. secure initialization), side channel resistance (cf. non-bypassability) and protection
against tampering of the source of randomness or the internal state (cf. self-protection) well as
means enforcing its usage for selected cryptographic functions (cf. non-bypassability).

The following chapter identifies example security functions and security mechanismsfor thelater
description of domain separation and secureinitialization and demonstration of non-bypassability
and self-protection. Note the ARC document for a concrete TOE shall provide or referenceto a
description of the security functions and mechanisms more detailed than in the current template
document.

2.1 Security Services provided by the underlying platform

In the case of a composite TOE the developer provides an overview of the TOE Summary
Specification (TSS) defined in the Security Target of the underlying layer in this paragraph.

Smart security devices are generally based on an underlying certified platform (security IC or
secure 1C with embedded operating system) which provides its certified security services to
enforce the global security of the product. Those essential services referring to security
mechanisms of the underlying platform are recalled if necessary in this section as a short
description focusing on properties enforced. The purposeisto ensure consistency of the overall
document. It is therefore not recommended to list all underlying security services but only those
that are used by the top layer.

Those mechanisms are aready certified and generally described in therelated | C datasheet or any
other document provided to the TOE developer.

Note the application may also use and rely on correctness of functions of underlying platform
which are not provided as security services and are not in the scope of the evaluation (e. g.
arithmetic operations of the CPU used for cryptographic calculations).

The underlying platform provides the following Security Services (SS):

Page 12/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

<Example> Security | C as underlying platform
SS.IC.Hardware cryptographic computation

Security 1C performs cryptographic operations according to FCS_COP.1/XXX (e.g. two-key
Triple-DES or AES encryption and decryption) ensuring confidentiality of the used cryptographic
key and operated data (see | C datasheet chapter x).

SS.IC.Random number generation

Security 1C provides unbiased and independent random values generated by a physical random
number generator for use in cryptographic key generation, algorithms and protocols (see IC
datasheet chapter x). The security 1C isdelivered with aRNG self-test software library detecting
non-tolerable statistical defects of the generated random numbers due to aging of the entropy
source.

SS.IC.Management of physical memory

Security IC provides Memory Management Service controlling access to memory areas and
ensuring data storage isolation (see | C datasheet chapter x). Code running in System operating
mode has full accessto all EEPROM and RAM memory areas, special function registersand the
management function itself. Code executed in Normal mode has accessto defined EEPROM and
RAM memories only.

SS.IC.Exception handling

Security 1C provides exception handling initiated by and depending on by dedicated reason. The
function XXX initializes and handles the exception.

SS.IC.Control of operating conditions

Security 1C provides stable execution of the code and provision of the security servicesinthelimit
of defined operating conditions. Outside the defined operating conditionsthe security |C entersa
fail secure state (internal reset). The operating conditions are described in the | C datasheet chapter
X.

<thisisonly a partial list with some examples of SSs>

<Example> Security | C with | C Dedicated Software
SS.IC.Generic cryptographic library

The underlying platform comprise a security 1C and a cryptographic library providing certified
RSA and AES algorithms (see platform datasheet chapter x). The TOE under evaluation usesthe
AES library part only (see TDS documentation x chapter y).

<thisisonly a partial list with one example of S5

<Example> Secur e softwar e underlaying platform
SS.SWPL.Secure object

The underlying platform provides containers dedicated to store sensitive data. These containers
ensure protection of integrity of the stored data (see OS datasheet chapter x).

SS.SWPL.Secure erasure

The underlying platform provides a secure erasure of sensitive datawhich ensuresthat all related
memory cells are overwritten, protecting against data leakage (see OS datasheet chapter x).

<thisisonly a partial list with some examples of SSs>

January 2012 Version 2.0 Page 13/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

2.2 Security mechanisms of the TSF

This chapter includes alist of the security mechanisms of the TSF and adescription or areference
to the description in the specific ADV_TDS document. How they are linked together (and withthe
Security Services of the underlying Platform) to prevent attacks and protect the TSF isdescribed
in chapters5and 7.

For the convenience of the reader descriptionsthat have been included here (with thereferencesto
other ADV documents added when possible) where found appropriate.

This section describes the security mechanisms provided by the TSF. In case of composite TOE
these descriptions can make reference to the Security Services provided by the underlying
platform to explain their behaviour.

Some aspects of the Security mechanisms are already described in ADV documents:

FSP provides the TSF description. The TSFI may or may not describe the external
behavior of a security mechanisms A link to the associated descriptionisin thiscase very
relevant to avoid rewriting a full description.

Ex: PIN management, secure protocol, access control...

TDS provides a more detailed description of the design of the product. Some security
mechanisms dedicated to ensure correct and secure execution could be described here. A
link to the associated description is in this case very relevant to avoid rewriting a full
description.

Ex: afunction providing a security check, ...

The security mechanisms enforcing security properties of the TSF (like domain separation, secure
initialization and non-bypassability) and self-protection but not directly implementing SFR may be
described in the ARC documentation or in TDS and referenced in the ARC documentation.

Some mechanisms protecting the TOE are spread al over the code and possibly only at a code
level. They must be described at a level consistent with the ADV_IMP, but only a generic
description of the principle is provided here.

The other parts of the ARC document shall describe how and where they are used in order to
allow for analysis of completeness. Reference would be made to these descriptions in the
following chapters of this document.

<Example> Security M echanisms of the Security IC

Special modules
SM.IC.TDES co-processor

Security 1C implements a hardware cryptographic co-processor performing two-key Triple-DES
encryption and decryption. The co-processor implements non-bypassability countermeasures
against timing attacks (i.e. the time of execution is independent on the key, the data and
encryption/decryption operation), power analysis and emanation analysis.

SM.IC.AES co-processor

Security |C implements a hardware cryptographic co-processor performing AES encryption and
decryption with key length 128 bits, and 256 bits. The co-processor implements non-bypassability
countermeasures against timing attacks (i.e. the time of execution isindependent on the key, the
data and encryption/decryption operation), power analysis and emanation analysis.

Page 14/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

SM.IC.Physical RNG

Security 1C implements a physical random number generator compliant to AlS31 (see | C datasheet
chapter x) generating unbiased and independent random numbers. The RNG implements self-
protection mechanisms detecting failure and non-tolerable statistical defects of the entropy source.
The RNG self-test softwarelibrary isintegrated in the TOE under evaluation (cf. TDS document x
chapter xx and IMP document y part yy). This softwareisnot side-channel resistant and therefore
the tested random numbers must not be used for other purposes than testing.

SM.IC.Memory Management Unit

Security IC implements a Memory Management Unit (see IC datasheet chapter x). Access
attempts outside the defined memory areas or to special function registers cause exception x (see
| C datasheet chapter y).

Countermeasures enforcing Self-Protection- Sensors

The device has several types of exception sensors monitoring its extrinsic operating parameters
such asvoltage, frequency, temperature, and light, which aretotally independent from each other
and from the other functionality of the TOE. The exception sensors guarantee the device to be
operated under the specified conditions. In case specified operating conditions are not fulfilled the
sensors generate an internal device reset.

The sensors can be enabled or disabled in order to allow testing of the device functionsbeyond the
sensor threshold. By testing devicesin production outside the sensor limit the correct function of
the device and its sensors at the sensor limitsis guaranteed. After delivery the hardware does not
allow the embedded softwareto interfere with the sensors.SMm.IC.Low and High Frequency Sensors

The Smart Card Controller cannot be operated at low clock frequency (foik < feikrs), LFS=Low
Frequency Sensor). At low frequencies a permanent RESET is performed. If the clock frequency
raises above the high frequency limit (fc k > rc ks, HFS=High Frequency Sensor), reset will be
executed as well.

SM.IC.Voltage Sensors

The Smart Card Controller includes a power-on-reset circuitry controlling the dedicated power-on
and power-off sequence.

When the VOItage Vop < VDD(LVS) (LVS:LOW VDD! Sensor) or Vpp > VDD(HVS) (HVS:ngh Vobs
Sensor) areset will be executed.

SM.IC.Temperature Error Sensor

The device supplies a temperature error sensor monitoring the operating temperature. If the
temperature drops below T<T g (LTS=Low Temperature Sensor) or if the temperature raises
above T>Tnrs) (HTS=High Temperature Sensor) an internal reset will be executed.

SM.IC.Light Sensor

There are a number of light sensors located on the chip that are designed in a way that assures
normal device functionality under specified conditions, but invokes a sensor reset, if the deviceis
exposed to strong light emitters.

Countermeasures enforcing Self-Protection - Detectors
SM.IC.Active Security Routing

(Description of the security routing)

SM.IC.Parity checks

January 2012 Version 2.0 Page 15/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

The security | C implements parity checks of data
(1) stored and read from EEPROM and RAM
(2) transferred on bus between ROM and CPU, EEPROM and CPU, RAM and CPU, <...>
as self-protection mechanisms.
SM.IC.Reset
The security |C implements internal reset mechanism setting of the program counter to O.

Countermeasures enforcing non_bypassability
SM.IC.Desynchro HW

The device features a desynchronization mechanism, by adding fake clock cycles and jitter. This
feature is enabled by setting the register XXX to following value: XXX. Such countermeasures
aim at disturbing an accurate synchronization; it is activated when <to be specified><reference to
AGD_OPE>.

SM.IC.Filter

A filter is applied to the current flow in such away that the power consumption of the chip is
smoothed during execution of critical operation.

Further Countermeasures

For functionality, which contribute to the security of the TOE but is not described as a Security
Mechanismin the ADV documentation, a detailed description of the functionality of the security
mechanism can be given in the following.

(The following description serves as an example.)
SM.IC.Arithmetic co-processor

The security | C implements an arithmetic co-processor for calculation of sum, product and square
of two operands modulo a number (see IC datasheet chapter x). The execution time of the
arithmetic operation does not depend on the operands and the modulus. The TOE under
evaluation implements <all, partly> the countermeasures described in the security 1C security
guidance x chapter y, cf. TDS documentation chapter z.

<thisisonly a partial list with some examples of SMs>

<Example> Security mechanisms of secur e softwar e platform

Global security
SM.SWPL.Redundancy

It consists of executing the same operation twice to check that both of them give acoherent result.
The second operation can aso be different, by being for instance an inverse computation.

SM.SWPL.Shadow Memory for NVM write parameter

The security mechanism stores the address and length information for the NV M write parameter.
Detailed description of the implementation is given in x.

SM.SWPL.Time-constant execution
Loops and other control structures are designed in such away that execution timeisindependent

Page 16/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

of the associated control value if thisinformation is considered as sensitive. For instance aloop
computation on an array is performed from thefirst to the last element even if the expected result
is known in the meantime.

SM.SWPL.Desynchro SW

To disturb any attacks requiring an accurate synchronisation, some fake code is executed at
random. This functionality is ensured by the function XXX and activated by calling the function
with the parameters xxx

SM.SWPL.Masking

To hide sensitive values during their manipulation, masking data techniques prevent against any
estimation of the concerned values. It consists of applying a mask to a value, performing
computation with this masked value and inferring the result for the sensitive — unmasked —value.
In this case, no computation is performed on the sensitive value and no leakage via side channel
can be exploited

Security Services provided by the TOE

These mechanisms are building blocks used to build security functionality provided by the TOE.
They are generdly internal to TSF modules and therefore often described in the TDS.
Neverthelessif the TOE isaplatform for composite certification their external behaviour ismore
probably described in the FSP since these mechanisms will be provided to the final developer.

SM.SWPL.State machine

The sequences of commands are checked to avoid bypassing of steps. If, at the beginning of each
command processing, a command sequence isn’t correct then the state machine returns an error.
The current state is protected using SS.IC.Control of operating conditions

(see ADV_TDS 8x.x).
SM.SWPL.Transaction

Atomic transaction ensuresthe integrity of data stored in persistent memory even in case of power
loss or perturbation. When opening a transaction context (see Transaction_openin ADV_TDS
8x.X) an unused persistent memory area is alocated for the data to be stored. The transaction
writes this data in the reserved memory area (see Transaction_write in ADV_TDS 8x.x). If the
transaction updates adata object then the original dataiskept valid in the persistent memory until
the write operation is finished, and the old data is erased and the persistent memory area is
deallocated after the write operation. The transaction is finalized by building a valid data object
containing the successfully written data (see Transaction finalisein ADV_TDS 8x.x).

SM.SWPL File integrity

Files created are composed of a data section and a control section. This control is a MAC
computed over the data of thefile using SS.I C.Hardware cryptographic computation. ThisMAC s
synchronized with the data section using SM.SWPL .Masking(see ADV_TDS 8x.x and ADV_FSP
8X.X).

SM.SWPL.Secure erasure

The underlying platform provides a secure erasure of sensitive datawhich ensuresthat all related
memory cells are overwritten, protecting against data leakage (see OS datasheet chapter x).

January 2012 Version 2.0 Page 17/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Functional security

These mechanisms implementing security functionalities provided by the TOE actually allow
describing secureinitialisation and discussing non-bypassing, saif-protection or domain separation
but are not provided to the final developer in casethe TOE isaplatform. Their external behaviour
will probably be described in the FSP.

SM.SWPL .Authentication tries mechanism protection

Usage of the TOE is alowed after a successful authentication. The number of authentication
attempts is limited to a maximum value. This mechanism is designed to ensure that the value
cannot be modified or disclosed by an attacker by using e.g SS.IC.Exception handling ,
SS.IC.Control of operating conditions, SM.SWPL.Transaction (see ADV_FSP 8x.x).

SM.SWPL.Access control protection

This mechanism is designed to detect abnormal operations that might indicate an attack by an
external entity by checking integrity of data accessed (using e.g. SM.SWPL.File integrity,
SS.IC.Management of physical memory SS.1C.Exception handling,) and verifying accessrights
(see ADV_FSP 8x.x).

SM.SWPL.ecure loading

Loading of keys is based on a secure channel using 3DES (SS.IC.Hardware cryptographic
computation)and AES (SS.IC+CL.Generic cryptographic library)and session keys based on a
random value (SS.1C.Random number generation) When loaded onthe TOE, keysarestored ina
secure container (SS.IC.Management of physical memory) (see ADV_FSP 8x.x).

SM.SWPL.Unblocking

TOE isinitially blocked and need afirst authentication (based on SS.1C+CL.Generic cryptographic
library) to unblock it and authorize TOE usage (see ADV_FSP 8x.x).

<thisisonly a partial list with some examples of SMs>

Page 18/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

3 Security domain separation

In this chapter it is explained what the different kinds of domains supported by the TSF are, how
they are defined (i.e. what resources are alocated to each domain), how no resources are left
unprotected, and how the domains are kept separated so that active entitiesin one domain cannot
tamper with resources in another domain.

Security domainsfor Security I1Cs

For Security ICsit can be assumed that security domains exist such as Test Mode and Operational
Mode (or similar). In Security Targets compliant to BSI-PP-0035 2007, these are defined through
FMT_LIM.2. Implementation of these security domainsis considered inother ADV familiesandis
not repeated here.

Other security domains might exist, for example due to an implemented Memory Management
Unit. In this case they should be described in the Security Target by Security Functional
Requirements (SFRs). If asecurity domain is not explicitly described within the Security Target, it
has to be described here.

<Example> Security domainsfor Security | Cs—Test domain and Oper ational
domain

The SFR FMT_LIM.2 defined in BSI-PP-0035 2007 separates the Test domain and the
Operational domain.

8 Inthe Test domain the dedicated software of the TOE isavailable e.g. for tests of the TSF by
the manufacturer. The Embedded software is not available because it is intended for the
operational use.

8 Inthe Operational domain the embedded software is available for execution by the user but
dedicated software is not available. That is because the embedded software may violate the
security policy of the user e.g. by reading, calculating and reporting checksums over the
physical memory areas including secrets.

Noteif the dedicated software of the TOE is available but with limited capability thiswill be dealt
under non-bypassability (cf. FMT_LIM.1 in BSI-PP-0035 2007).

<Example> Security domains for 1Cs— System mode and User mode
The memory management unit (SM.IC.Memory Management Unit) alows enforcement of

System mode of program execution with access to al memory areas and security
functional registers including the management registers of the MMU,

User mode of program execution with limited access to memory areas and no access to
security functional registers including the management registers of the MMU,

transition between these modes by exception handling.
Notethat the Security |C maintains these two security domain while the operating system running
on this platform may support further refined security domains within the user mode.

<>

January 2012 Version 2.0 Page 19/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

Security domains for composite smart cards
Untrusted entities and resources are defined by the limits and content of the TOE. For example:

In the case of the TOE being an “integrated product”, where the Security | C Embedded Software
consists of native code that implements both OS and application behaviour without demarcation
between them, there are no domains because all actions are brokered by the TOE. The application
isperformed by the T SF that maintains only datastructureto keep user’ s data separated. (cf. basic
configuration in [11])

In the case of the TOE being a “layered product” where the Security |C Embedded Software
consistsof an“OS Layer”, potentially with integrated application behaviour, and an “ Application
Layer” on top of it, there are two domains. The OS provides a separation mechanism between
itself and the Application Layer aswell as servicesto the Application Layer. If the TOE does not
contain application codeinthe“ Application Layer” the domain separation exists asaservice-offer
by the platform to a composite product built on it. (cf. extended configurationin [11])

In the case of the TOE being a multi-applicative platform, applications are untrusted entities
potentially active. An example isthe JavaCard Platform described in the JavaCard Syssem PP. The
TOE is responsible for card resource management and applet execution. Applet isolation is
achieved through the applet firewall mechanism that confines an applet to its own designated
memory area. Thuseach applet is prevented from accessing fields and operationsof objectsowned
by other applets or data owned by the TOE itself.

In the case where the TOE includes application(s) resident on such amulti-gpplicative platformthe
evaluated and non-evaluated applications of the product are maintained separately thanksto the
service offered by the platform. The capability of post issuance downloading (“open platform™)
does not introduce any differences in terms of domain separation.

Other structures can be found that mix the previous cases, for example a product that isa hybrid
with respect to a JavaCard platform and an isolated applicative C-code.

The following figures illustrate these various cases.

[soration isolation

Integrated product Piatform of a layered Layered product
(0 domain) product (2 domains) (2 domains)

Page 20/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

I |isotbtion |
(=TT

Multi application Muiti application Hybrid product
platform (n domains) product(n domains) (n domains)

For caseswhere the TOE dependsonthe I C or aplatformto play arolein domain separation, that
sharing of roles must be made clear by referencing the I C or platform security services.

For the composite smart card product, there are also different life-cycle modes as initiaization,
personalization or application mode. If these modesinvolve interfaces and code executionthat are
part of the TOE they can support different sets of domains with different mechanismsfor domain
separation.

When the domains and domain separation are described in the Security Target by Security
Functional Requirements they will not be described in further details as implementation of these
security domains is considered in other ADV families.

If the security domains are not explicitly described within the Security Target, they have to be
described here.

This description shall take into account all SFRs claimed by the TOE. That is to say the access to the
resources allocated to a domain must be covered by SFRs and SFRs corresponding to a function of
resource control must correspond to a domain separation mechanism.

The document “ Application of Attack Potential to Smart Cards’ lists attacks specifically relevant
for domain separation:

Il-formed Java Card Applets
Violation of firewall between applets

<Example> Security domainsfor a Java Card smart card - Applets

Each applet or applet package loaded on the TOE can be considered asresiding and performingin
asecurity domain; separation between themis controlled through the firewall. The JavaCard VM,
associated execution piles running on behalf of this applet, the parts of memory that contain the
byte-codes, and the objects belonging to the applet are the resources allocated to the security
domain of this applet.

Indeed, the TSF with the firewall controlsinformation flow at runtime. It controls object sharing
between different applet instances, and between applet instances and the Java Card RE.

January 2012 Version 2.0 Page 21/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

During the execution of an applet, the Java Card VM keeps track of the applet instance that is
currently performing an action. This information is known as the currently active context. Two
kinds of contexts are considered: the applet instances context and the Java Card RE context,
which has special privileges for accessing objects. No distinction is made between instances of
applets defined in the same package: all of them belong to the same active context and thereforeto
the same security domain. In contrast, instances of applets defined in different packagesbelong to
different contexts and therefore to different security domains. Each object belongsto the context
(defined as a security domain) that was active when the object was allocated. Initialy, when the
Java Card VM islaunched, the context corresponding to the applet instance selected for execution
becomesthefirst active context. Each time an instance method isinvoked on an object, acontext
switch is performed, and the owner of the object becomesthe new active context. In contrast, the
invocation of a static method does not entail a context switch. Before executing a bytecode that
accesses an object, the object's owner is checked against the currently active context in order to
determineif accessisallowed. Accessisdetermined by the firewall access control rules specifiedin
the'Y of document X. Those rules enable controlled sharing of objectsthrough interface methods,
that the object's owner explicitly exports to other applet instances. Put differently the object's
owner explicitly acceptsto share these objects upon request of other applet instancesinvoking the
interface method.

<>

Page 22/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

4 Initialization / start-up
Development phase (Delivery) Usage phase
Not evaluated configuration Evaluated configuration
Low-function mode l

Power on / reset

Phase 6

Secure initialisation

Self-protection

Low-function mode
* services not accessible
+ code prevented from running

The developer describes the start-up sequence with reference to the code modules that are
executed to perform the initialization function. It points out the functions that are not part of the
TSF and then not described yet in ADV_TDS.

The description focuses on the overall strategy, how the TSF isinitialized in a secure way and all
security features initialized during the start-up (e.g. backup recovery, sensitive areas integrity
check, fault counters ...).

For the functions that are not described in ADV_TDS, it isexplained why they are not reachable
when the TSF is in the secure operationa state or if they are reachable why their external
interfaces cannot be used to tamper with the TSF.

The description of how theinitialization process guaranteesthe T SF integrity at theend and how it
isitself protected against modification is part of the chapter “ Self-Protection”. However for clarity
it could be described here and referenced in this chapter.

January 2012 Version 2.0 Page 23/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

<Example> Secure | Cs— Secureinitialization and environmental control

Aslong as the operating conditions of the device in terms of voltage, frequency and temperature
do not reach the specified range thewhole I Ciskept inreset. After reset the device startswith the
internally functionality test as

(It has to be described why the boot sequence (start up sequence) is implemented such that a
secure state will be reached.)

Excerpt from BSI-PP0035-2007

The Security Architecture description of the T SF initialization processshall includethe procedures
to establish full functionality after power-up, state transitionsfrom the secure state asrequired by
FPT_FLS.1 and any state transitions of power save modes if provided by the TOE.

<Example> Start-up test of RNG

The RNG (SM.IC.Physical RNG) performs the following self-tests during start-up before
delivering any random number:

(1) Breakdown test of the entropy source,

(2) Statigtical test of the internal random numbers

If the start-up test fails the TSF enters afail secure state.

The following text shall provide more detailed TOE-specific description.
<>

<Example> Composite smart card

Theinitialization/start-up process switchesthe TOE from the power-off (down) stateinto aninitial
secure state. This processis invoked in two cases.

Cold reset: the power is applied to the TOE

Warm reset: the RESET signal is sent to the running TOE
The start-up processincludesthe I Cinitialization, the OS & JCSinitialization and the selection of
the default application in java state.

(Cold or Warm) reset is the only external interface of the TOE initialization function. In other
words, there is no other way to invoke this process.

Vcc (for power-on) and RST (for RESET) contact points are the only external interfaces of the
TSF initialization. Thereis no other way to execute this process.

The following diagram shows an overview of the reset sequence (component dependencies):

startup

main]
main{} Init {) Communication

module

.

:»z:jp_aewv

startup

Page 24/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

1. startup: the startup component isresponsible for theinitialization of the chip. It initializesthe
CPU registers, the security features and it clears the RAM.

2. main: the main component is in charge of initializing the OS&JCS. It includes the drivers
initialization, the initialization of the memory manager module, the communication module,
and the cryptography module. Oncethe OS & JCSinitialization isachieved, the main module
calls the JCRE component.

3. jcrer the JCRE component receives and dispatches APDUSs (the platform state being
OP_READY or later). At the first jcre invocation, the default applet is selected.

The main module always receives control after startup execution in order to initialize the native
operating system and the Java Card operation system.

Following diagram shows the initialization flow chart:

Raset

startup

L}

Init drivers

] I;l |
lnit wmgaaait l

Call irocess Restore ...
EEEEN EENNE

The start-up is composed of a boot sequence (including self-tests) and different security
initializations. It ensures that the chip is operating and protected against perturbation before
sending the ATR.
The software component boot.c allows checking and initializing the security services of the
component:
SS.IC.Hardware cryptographic computation (see also SM.IC.TDES co-processor,
SM.IC.AES co-processor)
SS.1C.Random number generation (see also SM.IC.Physical RNG)
It is protected by the following Security mechanism:
SM.SWPL.State machine
SM.SWPL .File integrity
The other HW sensors are activated automatically at power up of the chip and before the boot.c
execution.
The start-up executes aso the ErrorRecovery.c file handling the Transaction mechanism. At the
end the SM.SWPL .Transaction is initialized.

January 2012 Version 2.0 Page 25/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

The Init component allows the checking (including self-tests) and initialization of the Security
services. The following Security services and mechanisms are used for protection against side
channel by-pass and perturbation:

SM.IC.Filter

SM.SWPL.Masking

SM.SWPL.Fileintegrity

The TOE reaches a secure state after a successful completion of the initialization sequence,
because all security services mechanisms, security services and software modulesareinitialised in
proper order.

Provide an explanation of thefact that the secure initialization of the compositeisconsstent with
the guidance and used services of the platform.

As long as the following security mechanism SM.7 is not set up, the TOE protects the start-up
sequence against fault injections only by the sensors (cf. SM.IC.5 to SM.IC.8) and filters (cf.
SM.IC.12 Filter) of the chip.

The start-up sequence enforces that the SM.6 transaction mechanism is aways invoked and
performs a proper roll-forward or roll-backward before any software modules which depend on
the transaction mechanism are invoked.

The ErrorRcovery.c file cannot be executed inthe secure state because it can be called only by the
startup component.

<>

Page 26/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

5 Self protection

The document “ Application of Attack Potential to Smart Cards’ lists attacks specifically relevant
for self-protection

Physical Attacks

Overcoming sensors and filters

Perturbation Attacks

Attacks on RNG

Buffer overflow or stack overflow (depending on attack scenarios)

5.1 Self protection and initialisation process

The description of how theinitialization process guaranteesthe T SF integrity at theend and how it
isitself protected against modification could be provided in the Chapter “Initialization/ start up “
for clarity . In this case reference is made to this Chapter.

5.2 Self protection and low function mode

When the TOE is initialized in a low function mode and then transitions into the evaluated
configuration the developer has to explain how the TSF is protected against thisinitial code.
Thisistypically what could happeninthe TD SC& SD during thelife cycle of the TOE whena
specific code or apartial implementation is running during the development phase to build the
final configuration that will be delivered

<Example> Composite smart card

A specific code as a light OS or a loader is used to load the remaining part of the TOE at
development site.

<>

5.3 Self protection in full operational state of the TSF
<Example> Security | C - Physical tampering
The self-protection against physical tampering comprises:

(1) Passive security features as combination of features of the used | C technology and specific
implementation of the TSF increasing the necessary effort of physical manipulation.

(2) Active security mechanisms detecting manipulation of the TSF, e.g. SM.IC.various sensors,
SM.IC.Active Security Routing and SM.IC.Parity checks, and reacting on detected
manipulation with reset (by SM.IC.Reset).

<provide further TOE specific description here>

<Example> Security | C - Environmental controls

January 2012 Version 2.0 Page 27/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

<provide further TOE specific description here>

<Example> Security | C — Perturbation
<provide further TOE specific description here>

<Example> Security |C — RNG self-protection

The RNG implements self-protection mechanisms detecting failure and non-tolerable statistical
defects of the entropy source.

<provide further TOE specific description here>

<Example> Composite smart card

The electrical profile of the operation is varying from one execution to the other by using the
desynchronisation mechanisms SM.1C.Desynchro HW & SM.SWPL .DesynchroSW. This effect
makes it difficult to reproduce an attack at the same step of the computation.

Redundancy (SM.SWPL.Redundancy) applied to critical operation preserves the result and
prevents falsification.

Detection of error by redundancy or detection of intensive light by the chip (SM.IC.Light sensor)
triggers an exception. An adaptive reaction depending on the sensitivity of the code ismanaged by
the exception handling mechanism (SS.1C.Exception handling) ensuring the preservation of a
secure state.

Detection of file corruption by SM.SWPL.File integrity when the file contains sensitive data
triggers an erasure of the file thanks to SM.SWPL.Secure erasure.

<>

Page 28/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

6 Non-bypassability

All modes or operations of TSFI are documented in ADV_FSP and al interactions between
modules are documented in ADV_TDS. No further description is required.

When Functional Interfaces(i.e. external interfacesthat are not TSFI) exist the developer shal list
them and explain either why they have no interaction with the TSF or why they are not a path for
violation of security objectives.

A demonstration that the TSF prevents bypass of the SFR enforcing functionalities is given by
providing adescription on how the TOE reactsin the presence of the relevant attackslisted inthe
document “Application of Attack Potential to Smart Cards’ and bringing a conclusion. This
demonstration is provided in the Chapter “TOE protection in presence of attacks’.

Protection against exploitation of an insufficient design or implementation by an attacker having
logical accessto the TOE and protection against confidentiality objective violation by sde channel
analysis attacks are part of this Chapter.

Functionnal Interface TSFI
|

Intarface that arcess/manipulates object:
Mot associated with SFR-enforcerment Interface that access/maniplilates object documented.
Mot documentell,

Cither antities
Case?2
5 —— . I
—— “ — Case! ~ ~ N N ;‘\. :3\‘*’ ~
“'M'M." » ;ﬂ“;? N i £
! Cased
[tht Protected object Protected sbject

Case 1: exploit undocumented mode or operation of TSF!
Case 7: exploit undocumented functional interface

Case 3. exploit insufficient design or implementation
Cased: exploit side channel

The document “Application of Attack Potential to Smart Cards” lists attacks specifically relevant
for non-bypassability

§ SPA/DPA — Non-invasive retrieving of secret data
§ Higher Order DPA

§ EMA Attacks

§ Exploitation of Test features

January 2012 Version 2.0 Page 29/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

§ Bypass authentication or access control

§ Buffer overflow or stack overflow (depending on attack scenarios)
8 IllI-formed Java Card applications

8 Information gathering

§ Software attacks

§ Command editing

6.1 TSF always invoked

<Example> Physical protection of the Security 1C

The physical protection surface builds a continuous perimeter but with different security
mechanisms appropriate for the relevant physical attacks

(1) thefront sideof the Security | C isprotected by sensors SM.IC.Light Sensor, SM.IC.Active
Security Routing, and SM.|1C.Parity checks,

(2 the back side of the Security IC is protected by sensors SM.IC.Light Sensor, and
SM.IC.Parity checks and reacting on detected manipulation with reset (by SM.IC.Reset).

in combination with internal reset (by SM.IC.Reset) when physical tampering is detected.

The sensors and the active security routing are located where critical modules are implemented
(see TDS documentation x chapter y and | MP documentation z). The sensors<list of sensors> are
always active and will not be disabled even in power save mode.

The parity checks controlling the modules <list of modules> and cannot be disabled.

<Example> Environmental control of the Security IC

The sensors SM.| C.various sensors control the environmental operating conditions continuously
causing an internal reset (cf. SM.IC.Reset) when violation are detected. The correct operation
within the controlled environmental condition is demonstrated by characterization tests (cf. ATE
documentation x). The sensors and the interaction with internal reset cannot be disabled.

<Example> For smart cardswith JavaCard System

Due to the EAL4+, al the operations and modes of the TSH are documented in ADV_FSP and
ADV_TDS. So the exploitation of undocumented mode or operation of TSFI for bypassing an
SFR_enforcing entity is not possible.

Section XXX hasidentified the security domains (SD) of the Javacard platform and shownthat all
these SDs enforce their own isolation. In particular it is not possible for the SD involving
functional interfaces belonging to an applet that isnot included inthe TOE to accessany protected
object managed by a security domain involving a TSFI; the exploitation of an undocumented
functional interface is therefore not possible.

<>

6.2 Side Channel

The security mechanisms and how they are working together to avoid information leakage or how
they distort the information in such away it is not exploitable are described below:

Page 30/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

<Example> Illicit information flow dueto internal data transfer

FDP_ITT.1 Basic internal transfer protection and FPT_ITT.1 Basic internal TSF data transfer
protection in BSI-PP-0035-2007 require the TSF to protect user data and TSF data from
disclosure whenit istransmitted between separate parts of the Security I C (i.e. different memories,
the CPU and other functional units (e.g. acryptographic co-processor) are seen as separated parts
of the TOE). Inthis case side channel protection isdirectly addressed by SFR. In other protection
profiles side channel resistance is required by an extended component SFR (e. g. BSI-CC-PP-
0059-2009 [10] defines FDP_EMS.1). The developer may decide to deal with all aspects of side
channel resistance in the ARC document.

<Example> Cryptographic co-processor s of the Security I1C

SM.IC.TDES co-processor and SM.IC.AES co-processor performing unaided cryptographic
operation implement security mechanisms preventing side channel attacks.

Note, arithmetic co-processors do not implement cryptographic algorithms and cannot be claimed
as SFR compliant to CC part 2 in security targets'. Therefore they are not part of the TSF and
addressed in the security architecture and vulnerability analysis of the Security IC.

<Example> Composite smart card

SM.IC.TDES co-processor, SM.IC.AES co-processor, SM.SWPL . Time-constant executionand
<list of security mechanismsin cryptographic implementations> prevent illicit informationflow on
sengitive data due to the execution timing of a critical operation.

When SS.1C.Random number generation is active random numbers are constantly generated. This
mechanism adds a perpetual noise that is added to the current consumed by the chip. Moreover
SM.IC.Desynchro HW creates disturbance in the normal current profile of operations and
SM.IC.Filter is blurring the final power consumption.

SM.SWPL.Secure loading protectsthe keyswhen they are loaded to be used by thecrypto library.

The mechanisms SM.I C.Desynchro HW, SM.Desynchro SW and SM.Masking hide the sensitive
data with a statistical noise when the attacker tries to get information by correlation between
power consumption and manipulated data.

<>

! The devel oper might define an extended component in order to describe the functionality of thearithmetic co-processor.

January 2012 Version 2.0 Page 31/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

7 TOE protection in presence of attacks

The analysis assesses the effectiveness of the TOE Security Features and/or the Security
Mechanisms (SM) of the TOE to resist against different attack methods. The CC supporting
document “Application of Attack Potential to Smart Cards® [JHAS] serves as areference to
ensure covering state of the art attacks. Inthefollowing, examples are presented dong thelines
of the current [JHAS] document at the time that this Guidance document was written.

<Example> SecureIC
Physical Attacks

The attack is directed against the 1C and often independent of the embedded software (i.e. it
could be applied to any embedded software and is independent of software counter measures).
The main impacts are:
Access to secret data such as cryptographic keys (by extracting internal signals)
Disconnecting |1 C security features to make another attack easier (DPA, perturbation)
Forcing internal signals
Even unknown signals could be used to perform some attacks
The potentia use of these techniques is manifold and has to be carefully considered in the
context of each evaluation.
(Continue description, name/describe all the Security Mechanisms and/or Security Features
involved and how they are supportive to counter this attack.)

<Example> Composite product — Self-protection
Perturbation Attacks

The attack will typically aim to make cryptographic operations weaker by creating faultsthat can
be used to recover keys or plaintext, or to avoid or change the results of checks such as
authentication or lifecycle state checks or else change the program flow.

The typical external effects on an I C running a software application and the reaction of the TOE
are asfollows:

Modifying avalue read from memory during the read operation: the value held in memory is not
modified, but the value that arrives at the destination (e.g. CPU or coprocessor) ismodified. This
may concern data or address information

The sensitive data are stored in files. The fault generated in these files by the
perturbation is detected by SM.SWPL.File integrity and the content of the file is erased
by SM.SWPL.Secure erasure to be no more used.
When the perturbation modifies the address where the data is read in such away an
access is provided to a different Security Domain, this violation is detected by
SS.IC.Management of physical memorythat trigger an exception handled by
SS.1C.Exception handling that leads on a reset.
When the perturbation generates an abnormal operation on datathe SM.Redundancy
will detect the fault.

- . Modifying the program flow: the program flow is modified and various effects can be
observed such as skipping an instruction, inverting atest, generating a jump, generating
calculation errors,

Page 32/34 Version 2.0 January 2012

Joint Interpretation Library Appendix 1: Security Architecture requirements (ADV_ARC)

Modifications of the program flow in the critical section of the code. Irrespective of
the various effects, the attacks are always covered by one of the following mechanisms
working together: SM.Redundancy, SM.Transactions, SM.Access Control.

<>

<Example> Composite product — Non-Bypassability — Side channel

The TOE exhibits power consumption, which isafunction of the commands executed and the data
used, as both the shunt current in the switching process and the capacitive recharging is dependent
on the process taking place at that instant. V arious methods of inferring the data being processed
from analysis of the power consumption are known (e.g. SPA or DPA).

For this purpose it is first necessary to resolve the power consumption (also by averaging of
repeated measurements) to the point that the information becomesvisible. Thisattack consists of
the two steps measurement and analysis.

The Security Mechanisms SM.n, SM.n+1, SM.n+m, ... ensure that the data transferred viathe
bus is encrypted and prevents direct correlation of stored data and power consumption.

<>
<Example> Composite product — Non-bypassability- Insufficient design
Information gathering and protocol attacks

This type of attack tries to use the protocols in ways that were not intended by the protocol
developer or to send commands that the smartcard does not expect in its current state.

The APl ischaracterised by a set of n commands, each having a method signature characterised by
the parameters given in chapter x of the document y. The range of values for the parameters is
given in the implementation of each command. A centralised command processor verifies the
command parameter value and checks it against allowed values. If the delivered parameter is out
of range, the command response will be the error code xy...."

Module XX inthe TDS is devoted to the handling of these aspects
<>

January 2012 Version 2.0 Page 33/34

Appendix 1: Security Architecture requirements (ADV_ARC) Joint Interpretation Library

8
[3]

[4]

[3]

[6]

[7]

[8]
[9]
[10]

[11]

Bibliography

Common Ciriteriafor Information Technology Security Evaluation, Part 1. Introduction
and General Model; CCMB-2009-07-001, Version 3.1, Revision 3, July 2009

Common Ciriteriafor Information Technology Security Evaluation, Part 2: Security
Functional Components; CCMB-2009-07-002, Version 3.1, Revision 3, July 2009

Common Ciriteriafor Information Technology Security Evaluation, Part 3: Security
Assurance Requirements, CCMB-2009-07-003, Version 3.1, Revision 3, July 2009

Common Methodology for Information Technology Security Evaluation, Evaluation
Methodology; CCMB-2009-07-004, Version 3.1, Revision 3, July 2009

Supporting Document Mandatory Technical Document Composite product evaluation
for Smart Cards and similar devices, September 2007, Version 1.0, Revision 1

Application of Attack Potential to Smartcards, February 2009, Version 2.7
BSI-PP-0035-2007 Security I1C Platform Protection Profile, Version 1.0, 15.06.2007

BSI-CC-PP-0059-2009 Protection Profile for Secure Signature Creation Device - Part
2: Device with Key Generation, Dec. 2009

Protection Profile Embedded Software for Smart Secure Devices Basic and Extended
Configurations (reference ANSSI-CC-PP-ESforSSD, version 1.0, 27 November 2009)

<developer documents>

Page 34/34 Version 2.0 January 2012

