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1 Introduction 

1.1  Target Audience 

This document is addressed to: 

- developers who are preparing for a cryptographic evaluation of the mechanisms 

involved in their security product;  

- evaluators who are developer independent people commissioned to evaluate the 

security of cryptographic mechanisms.  

As this document is an informal evaluation scheme methodology, “the tester” denotes 

both roles in the next sections. 

In this document, “the system” denotes the product under evaluation.  

1.2  Aim of the document 

This document describes the evaluation tasks related to the implementation of 

cryptographic mechanisms and the secure composition of cryptographic mechanisms that 

shall be performed during the evaluation of a product implementing cryptographic 

mechanisms under the SOG-IS Crypto Evaluation Scheme (SCES). 

In order to avoid unnecessary repetitions, the document presents evaluation tasks in a 

hierarchical manner. For example, some tasks are relevant for all symmetric atomic 

primitives and others are specific to a given block cipher only. 

In addition, every evaluation task is framed and identified as follows: 

[Mechanism-Name-Number] <Evaluation task description> Inputs 

 

The Mechanism is the cryptographic mechanism targeted by the evaluation task. The 

Name describes the nature of the evaluation task. The Number enables referring to 

several related evaluation tasks for a mechanism, under a single name. “Inputs” refers to 

the input(s) required for the evaluation task, and could be provided by the developer. 

 

Some tasks are defined with an array of several lines as follows: 

[Mechanism-Name-Number] <Evaluation task description> Inputs 

[Mechanism-Name-Number] <Evaluation task description> Inputs 

This means that only one of these tasks are necessary as they intend to evaluate the 

same point. The task of the first line is recommended. The other lines are alternative 

tasks. They generally differ in the inputs available. 

 

1.2.1 Inputs 

To perform a task, some inputs are required by the tester. The following inputs are 

considered: 

I1: Cryptographic design: an unambiguous description of the mechanism 

definition and the main characteristics of the implementation(s) 

For a mechanism under evaluation that is implemented according to a (recognized) 

standard specification, the design document can declare compliance with the standard 

reference. Otherwise, the design document must specify differences with the standard. 

The document must indicate: 

- The used cryptographic protocols (such as TLS) and their specification (for non-

standard protocols) or a reference to their specification (for standard-compliant 

protocols). 
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- The used cryptographic mechanisms/primitives and their specification (for non-

standard mechanisms/primitives) or a reference to their specification (for 

standard-compliant mechanisms/primitives). For non-standard primitives and/or 

mechanisms, implementation test vectors with enough details (i.e. sets of 

input/output or plaintext/cipher text data and internal states) shall be provided. 

This gives  the ability for the tester to implement the primitive/mechanism. 

- The exact supported ranges of input and/or output parameter values if some 

freedom is left by the specification concerning these ranges - for instance the 

ranges of supported bitlengths in the case of variable lengths binary parameters. 

- The significant implementation choices, e.g., software or hardware, bit-, byte- 

word- oriented, bitslice. 

- A specification of the key management concept together with all supporting key 

management functions and mechanisms such as random number generation, key 

generation, key distribution, key storage, key wrap, use of certificates, key 

revocation/renewal, crypto period of key, etc. In particular, specification should 

include a description of the maximum life expectancy of all keys that are in use. 

 

I1 also contains Guidance Documentation 

The cryptographic design may not be enough for a complete overview of all cryptographic 

mechanisms used in the system. Indeed, some parameters may be chosen by a user 

(generally an administrator) of the system under evaluation and do not belong to the 

cryptographic design. For example, if the system requires a TLS configuration prior the 

normal usage of the system, it is likely that the guidance contains information on how to 

configure the TLS server. Therefore, it is likely that the guidance documentation contains 

recommendations on the ciphersuites and authentication keys. 

The guidance documentation shall contain a description of the system preparation, and 

how to manage and/or use the system under evaluation. 

 

As the cryptographic design and guidance documentation are complementary for a 

complete overview of all cryptographic mechanisms used in the system, they belong to 

the same input I1. 

 

I2: A testing interface of the cryptographic mechanisms 

This specifies how the mechanisms can be addressed, allowing to submit input values, 

such as the key’s value in the case of keyed mechanisms. In the case of randomized 

mechanisms, this testing interface may also possibly allow to submit the values to be used 

instead of  the output of  a random generator. The exact formatting conventions for the 

external interface of the mechanism implementation of the system under evaluation, e.g. 

whether the input and output parameters are represented as binary strings, byte strings 

shall be given. I2 also specifies how to collect the corresponding output values. For all 

mechanisms of the system under evaluation, this interface must allow the tester to 

directly access the primitives and not only the modes. 

The final system under evaluation might not have such interfaces. In fact, such interfaces 

might be deliberately unavailable for security considerations. It is not mandatory to 

provide such interfaces in the final system under evaluation. A modified system that 

permits access to such interfaces is an acceptable input. Sub-systems containing such 

interfaces, before the system integration, also constitute an acceptable input. In either 

cases, a detailed description of the differences with the final system is necessary for 

justification that the tests are valid in the final system. 

 

I3: Implementation representation 

For each mechanism in the system under evaluation, the implementation representation is 

themost abstract representation of the mechanism. The representation is used to create 

the implementation. This may be software source code, firmware source code, hardware 



 

6 

diagrams and/or hardware design language code or layout data. Source code annotation 

helping the tester to establish the correspondence between the specification and the 

implementation is also required. 

If the cryptographic implementation is provided by an external library, I3 must include the 

code calling the library functions. This allows the tester to analyse the correctness of the 

calls to the library. 

Additional information such as compilers, compilation options, scripts, are part of the 

implementation if they contribute to the generation of the mechanism implementation. 

The specifications of the programming language shall be provided as well. Build 

configuration files may also be part of inputs for evaluation as they contribute to the 

implementation of cryptographic mechanisms. 

Output 

All the mentioned tasks below aim to conclude on the security of the cryptographic 

mechanisms used by the product under evaluation and their secure implementation. All 

the evaluation tasks are detailed in an output report which allow the tester to justify the 

correct covering of the evaluation tasks.  

The outcome of each task shall be either “Pass” or “Fail” with a rationale for justification of 

the result and evaluation evidences. For instance, if the tester performs source code 

analysis for completing an evaluation task, the analysed source code sample should be 

considered in the rationale. 

Also, as the tester is either the developer or the evaluator, the output report allows the 

reader to make sure the evaluation tasks were performed correctly and entirely. For 

instance, if the developer performs the conformance testing, a simple checklist of “Pass” 

might not be sufficient. The output report should have to provide the evidence that the 

conformance tests have been done correctly and entirely. 

It is not the purpose of this document to give additional details on the content of the 

testing report. This document is rather a tasks list with detailed inputs required to execute 

them. 

1.3  Structure of the document 

The document is organized as follows: 

- Chapter 2 introduces the overall methodology; 

- Chapter 3 specifies the evaluation tasks for every considered cryptographic 

mechanisms, with clarifications; 

- Chapter 4 provides a global overview of the evaluation tasks;  

- Chapter 5 presents conformity test vectors for KATs and MCT. 
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1.5  Acronyms 

ACM Agreed Cryptographic Mechanism 

CC Common Criteria 

CRT Chinese Remainder Theorem 
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EC Elliptic Curve 

ECSM EC Scalar Multiplication 

ESSIV Encrypted Salt-Sector Initialization Vector  

IC Integrated Circuit 

KAT Known Answer Test 

KEM Key Encapsulation Mechanism 

MAC Message Authentication Code 

MCT Monte-Carlo Test 

SCA Side-Channel Attack 

SCES SOG-IS Crypto Evaluation Scheme 
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2 Evaluation of cryptographic mechanisms 
The objective of this section is to give an overview of the evaluation tasks that can be 

performed while evaluating cryptographic mechanisms. The tasks are broadly outlined. 

They are refined into actionable tasks in section 3. 

2.1  Checking that all tested mechanisms are 

agreed 

It is assumed here that the context of the evaluation (e.g. a CC evaluation under SOG-IS 

MRA) allows the tester to identify a crypto evaluation perimeter within the evaluated 

product where all cryptographic mechanisms of the system under the evaluation must be 

ACMs. With I1, the first task for the tester is to identify the cryptographic mechanisms 

used by the product within this perimeter and then check that all these cryptographic 

mechanisms are agreed as specified in . 

In order to consider a cryptographic mechanism within the SOG-IS Crypto Evaluation 

scheme, its cryptographic robustness shall be evaluated by SOG-IS certification bodies, 

and recognised as agreed.  lists all the agreed mechanisms. In the general case, this 

evaluation task consists in checking that the considered cryptographic mechanism is 

included in these lists and that all the parameter sizes or options retained for that 

mechanisms satisfy all the requirements expressed in [ACM]. 

In addition to this task, the tester shall identify for each keyed mechanism how the key is 

generated in order to analyse its cryptographic robustness. In particular, the tester shall 

check that the key generation is agreed by [ACM]. 

2.2  Conformance testing 

The tester shall perform conformance testing tasks for all implemented instantiations of all 

cryptographic mechanisms used in the system. The tasks, for each mechanism, are 

described in Section 3. 

According to this document, the objective of conformance evaluation is to establish with a 

high degree of confidence that a (non-malicious) implementation correctly implements the 

cryptographic mechanisms being evaluated. 

Three different kinds of testing methods, with different purposes, are described below. 

2.2.1 Random Test/Monte-Carlo Test (MCT) 

A cryptographic function is (pseudo-)randomly tested by applying it iteratively, starting 

from a seed. The large number of iterations enables to test the function against a large 

number of pseudo-random values. The seed is either predefined or randomly generated 

when starting the MCT. In the former case, the final result is compared against a 

predefined reference value. In the latter case, an MCT, with the same seed, is run with a 

reference implementation of the function; the two final results are then compared. In both 

cases, the outcome is obtained from the result of the comparison. 

MCT aims to intensively test cryptographic primitives such as: 

- block ciphers; 

- hash functions with fixed length inputs, to validate the fixed-length building block of 

hash functions; 

- modular exponentiations; 

- EC scalar multiplications and multi scalar multiplications; 

- multiplications in 𝐺𝐹(2128). 

In order to do so, the tested function 𝑓 is applied to values that are updated by applying 

encoding functions to the latest outputs of 𝑓. The random seed of the MCT provides initial 

values, possibly together with enough pseudo-outputs of 𝑓 that can be used to bootstrap 

the iteration.  
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For keyed algorithms, 𝑓 is applied on a key and an input; and the iteration consists in two 

nested loops. The input is updated between each inner loop while the key remains 

unchanged. The key part is updated between each outer loop. The number of iterations of 

the outer loop, N_key, and the number of iterations of the inner loop, N_input, are 

chosen for each mechanism in such a way that every program branch, and every constant 

of the mechanism have been tested with very high probability. N_key and N_input must 

be greater than one for testing the function against at least two different keys and two 

different inputs (for all keys). 

 

An encode_input function, resp. encode_key function, forms an updated input, resp. 

key,  from one or several outputs of 𝑓. If the encoding function requires several outputs, 

the first_outputs argument provide values to be used in place of 𝑓 outputs to bootstrap 

the iteration. 

Thus, MCT calls two helper functions: 

• encode_key: a deterministic function that converts outputs of the function 𝑓 to a 

valid key.  

• encode_input: a deterministic function that converts outputs of the function 𝑓 to 

a valid input.  

Several outputs might be required for encode_key to gather enough entropy for 

generating a valid key. The number of outputs (nb_for_key) required will be specified for 

each primitive as long as this function. For example, an AES-256 key needs two outputs of 

128 bits. 

The same goes for encode_input. Several iterations might be required to generate 

enough outputs for encode_input. The number of outputs (nb_for_input) required will be 

specified for each primitive. 

The specifications of encode_input and encode_key depend on the primitive under 

consideration, and are detailed later in this document. 

The following algorithm describes the generic MCT for keyed primitives (e.g. block ciphers, 

modular exponentiation and EC scalar multiplication1):  

 

1 The exponent of modular exponentiation, and the scalar of scalar multiplication can 

be considered as keys. 
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Require: N_key, N_input, nb_for_key, nb_for_input, first_key, first_input, first_outputs 

(if necessary) which is an array of outputs. 

Output: an output of 𝑓. 

Algorithm: 

 ctr = 0 // Number of outputs 

 K = first_key 

 input = first_input 

 output = [] // an array of outputs. 

         // For 𝑖 ≥ 0, output[𝑖] is the 𝑖th output of the function 𝑓  
  

 if length(first_outputs)>0 // if first_outputs are provided 

  for 𝑖 = 1 until 𝑖= length(first_outputs) do 

      // For 𝑖 < 0, output[𝑖] is provided by first_outputs 

   output[−𝑖] = first_outputs[𝑖] 
 

 do N_key times 

do N_input times 

 output[ctr] =𝑓(K, input) 

 ctr = ctr + 1 

 input = encode_input(output[ctr−1], …, output[ctr−nb_for_input]) 

input = first_input 

K = encode_key(output[ctr−1] , …, output[ctr−nb_for_key)]) 

 

return output[ctr−1] // return last output 

 

 

  

N_key and N_input are chosen for each mechanism in such a way that every program 

branch, and every constant of the mechanism have been tested with very high probability. 

N_key and N_input must be greater than one for testing the function against at least 

two different keys and two different inputs (for all keys). 

Note that the last encode_input of each inner loop and the very last encode_key 

executions are unnecessary since the output is not used afterwards. This simplifies the 

algorithm description but the tester can take this note into account and avoid these 

unnecessary executions. 

 

For unkeyed primitives (e.g., hash functions and multiplication in 𝐺𝐹(2128)), this algorithm 

is adapted by removing the outer loop :𝐺𝐹(2128) 

Require: N_input, nb_for_input, first_input, first_outputs (optional) which is an array of 

outputs. 

Output: an output of 𝑓 

Algorithm: 

 ctr = 0 // Number of outputs 

 input = first_input 

 output = [] // an array of outputs. 

         // For 𝑖 ≥ 0, output[𝑖] is the 𝑖th output of the function 𝑓  
  

 if length(first_outputs)0 // if first_outputs are provided 

  for 𝑖 = 1 until 𝑖 = length(first_outputs) do 

      // For 𝑖 < 0, output[𝑖] is provided by first_outputs 

   output[−𝑖] = first_outputs[𝑖] 
  

 do N_input times 

output[ctr] =𝑓(input) 

ctr = ctr + 1 

input = encode_input(output[ctr−1],  …, output[ctr−nb_for_input]) 
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return output[ctr−1] // return last output 

 

2.2.2 Known Answer Test (KAT) 

This type of tests consists in applying the cryptographic mechanism to a fixed set of 

input(s) and in comparing its output(s) to the expected corresponding output(s). 

The MCT method is useful as it permits to intensively test a primitive. However, by 

construction, only inputs of constant size and with unpredictable contents are submitted to 

the primitive. KATs  can complement MCT, by allowing to test a particular behaviour of the 

mechanism by submitting specific inputs. 

2.2.2.1 Correct behaviour of the implementation 

KATs may contain non-specific inputs for a first rough check of the correct behaviour of 

the implementation. Those tests are particularly useful for complex mechanisms, such as 

Asymmetric Constructions, relying on several other primitives. 

2.2.2.2 Length tests 

These tests are relevant when the cryptographic mechanism considered is a variable input 

length mechanism (e.g. hash functions or an encryption mechanism), or variable output 

length mechanism (e.g. MAC with truncation). These tests allow the correctness 

verification of the chaining mechanism implementation, as well as the padding 

implementation. When the range of input length is limited by the implementation, such 

limits shall also be checked through appropriate length tests. 

2.2.2.3 Corner cases 

MCT, non-specific KATs and different input length KATs all permit to test the normal 

behaviour of the mechanism. However, some specific cases within a mechanism are very 

unlikely to happen by chance. This is particularly the case with schemes that need to 

verify a padding correctness. Some specific inputs are designed to trigger those corner 

cases, either positive or negative. 

2.2.3 Source code analysis 

As mentioned above, source code analysis shall be used to complete conformance 

evaluation, especially to identify or confirm the underlying primitives and mechanisms. For 

instance, source code analysis permits the tester to: 

- check that a refresh of the random generator is done; 

- check that intermediate random values within a mechanism (for instance for 

paddings schemes) are correctly generated. 

Source code analysis also provides an alternative way to verify that the implementation is 

compliant with the specifications by direct inspection. For instance, source code analysis 

permits the tester to: 

check that a refresh of the random generator is done; 

check that intermediate random values within a mechanism (for instance for paddings 

schemes) are correctly generated. The KATs described above permit to test the general 

behaviour of the implementation, with different input sizes and corner cases in a quick 

and exhaustive manner. The tester gains assurance on the primitive/mechanism by 

running the KATs. However, the tester needs access to itsthe primitive mechanism 

interface (I2). If this interface is not easily available but the implementation 

representation (I3) is, then the tester can gain assurance on the primitive/mechanism 

conformance with an implementation representation analysis. In this case, the tester can 

use KATs provided to be reminded to check if each specific test is taken into account. 

Note that MCT cannot be replaced by an implementation representation inspection as the 

implementation representation of the primitive is overly complex. Indeed, it seems not to 
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be possible to establish the conformance of a modular exponentiation only by an 

implementation representation inspection.  

2.3  Robustness Analysis 

2.3.1 Implementation Representation Analysis 

In addition to being usable for conformance testing purposes, implementation 

representation analysis can allow to identify some vulnerabilities. For instance, source 

code analysis permits the tester to: 

- identify the entropy sources gathered by a random number generator for 

instantiation and reseed procedures; 

- support the correct erasure of sensitive data buffers (e.g. to avoid cold boot 

attacks). 

2.3.2 Avoidance of Implementation Pitfalls 

The implementation of cryptographic mechanisms is a sensitive process, where several 

errors might be introduced. Over the course of academic research and evaluation efforts, 

common implementation errors have been identified, and their impact on the security of 

the mechanism assessed. These errors may be linked to non-conformities of the 

implementation, or to bad implementation choices of mechanisms weakening the security 

of the mechanism.  lists such implementation pitfalls for agreed mechanisms. 

Note: The distinction between conformance evaluation and pitfalls detection is sometimes 

tenuous, since non-conformity can be security impacting and result in a vulnerability. 

Testing tasks shall ensure that these known implementation pitfalls are avoided. 

2.3.3 Resistance to Leakage and Perturbation Attacks 

Side-channel and Perturbation attacks are defined as follows in . 

«Side-channel attacks target secret information leaked through unintentional channels in 

a concrete, i.e. physical, implementation of an algorithm. These channels are linked to 

physical effects such as timing characteristics, power consumption, or electromagnetic 

radiation. 

Perturbation attacks change the normal behaviour of an Integrated Circuit (IC) in order to 

create an exploitable error in the operation of a TOE. The behaviour is typically changed 

either by operating the IC outside its intended operating environment (usually 

characterised in terms of temperature, Vcc and the externally supplied clock frequency) or 

by applying one or more external sources of energy during the operation of the IC. These 

energy sources can be applied at different times and/or places on the IC.» 

The document  is an evaluation guidance related to Side-channel and Perturbation attacks 

in the context of smartcards and similar devices. The concept of side-channel attacks can 

be expanded to include attacks leveraging the leakage of sensitive information on logical 

interfaces, e.g. through status or error messages, or by design of a cryptographic 

mechanism, e.g. the mechanism behaves in a biased way. Leakage and perturbation 

attacks are not restricted to the smartcard domain and may affect any implementation 

domain. The present document provides general notes on sensitive data within 

mechanism implementations that shall not be disclosed (using, for example a Side-

channel) to an attacker. A data is said sensitive in the sense of confidentiality and/or 

integrity. The amount of information on such data that an attacker could recover through 

Side-Channel or Perturbation attacks shall be as small as possible2. Also, such sensitive 

data shall not remain, even partially, in the volatile or non-volatile memory after usage. 

 

2  It is not possible to get a “zero leakage” implementation. For many evaluation 

procedures, an attacker level is defined. The term “as small as possible” would be refined 
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in those procedures. This document is not intended to define what a small amount of 

information is. 
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3 Specific cryptographic mechanisms 
evaluation tasks 

3.1  Symmetric Atomic Primitives 

3.1.1 Block Ciphers 

 

[BlockCipher-AgreedMechanism-1] The tester shall verify that the tested block 

cipher is agreed . 

I1 

The following block ciphers are agreed in : AES-128, AES-192, and AES-256 specified in ,  

and Two-Key-3DES and Three-Key-3DES specified in . 

The following table summarises the parameters for each agreed symmetric block cipher.  

Symmetric 

block cipher 

Key size 

(in bits) 

Block size 

(in bits) 

 

AES 

128 bits  

128 192 bits 

256 bits 

Triple-DES 112 bits 64 

168 bits 

 

[BlockCipher-ConformanceTesting-1] The tester shall test all key lengths of 

the primitive being used in the system. 

I1 

I2 

Analysis: The key length of a given block cipher may have an impact on the block cipher 

implementation. For instance, the AES key schedule varies depending on the key length. 

As a consequence, the variants of the algorithm should be considered as independent 

algorithms, and should all be tested. 

Recommendation: Even if a key length is not used in the system under evaluation, it 

should be tested as long as it is supported or implemented in the system. Indeed, it is 

unsafe to keep an untested unused function in a product. If the function is activated later 

during a system evolution, the function would not have been tested. 

 

[BlockCipher-ConformanceTesting-2] The tester should test all the directions 

of the block cipher operation being used in the system. 

I1 

I2  

 

Analysis: the decryption operation generally differs substantially from the encryption 

operation, and needs to be separately tested. 

Recommendation: Even if a direction is not used in the system under evaluation, it is 

recommendedto test it as long as it is supported or even implemented in the product. 

Indeed, it is unsafe to keep an untested unused function in a system. If the function is 

activated later during a system evolution, the function would not have been tested. 

 

[BlockCipher-ConformanceTesting-3] The tester shall perform the MCT, 

detailed in the section below for each primitive. 

I2 

Analysis: MCT aims to test the block cipher primitive. MCT described in section 2.2.1 of 

this document shall be used. A refinement for each agreed block cipher is proposed in the 

remainder of this section. 

 

Sensitive data within Block Ciphers implementations 
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The encryption or decryption key is a sensitive data. 

Depending on the mechanism using the block cipher, the plaintext of the block cipher 

and/or the ciphertext are sensitive. This will be specified in the sections related to these 

mechanisms. 

In addition, the knowledge of the following sensitive data permits to derive the encryption 

key: 

- Each round key. 

- Temporary variables such as the state after each round are sensitive since their 

disclosure permits to perform a cryptanalysis on the block cipher with a smaller 

number of rounds. As a consequence, the round counter is also a sensitive data in 

the sense of integrity, since perturbation of the round counter may lead to the 

disclosure of temporary variables. 

- Erroneous ciphertexts are sensitive data because they can be used to derive the 

key. The number of erroneous ciphertexts required by the attacker depends on the 

fault model. For AES encryption, a single incorrect ciphertext isenough to recover 

sensitive data if the faults are very accurate . 

The amount of information on sensitive data, accessible to an attacker through Side-

Channel or Perturbation attacks, shall be restrained. Also, sensitive data shall not remain, 

even partially, in the volatile or non-volatile memory after usage. 

AES 

In the case of the AES blockcipher,  [BlockCipher-ConformanceTesting-3] is achieved 

by applying the MCT described in section 2.2.1 with the following details. 

The functions encode_input and encode_key are defined as follows: 

- encode_input is the identity function; nb_for_input=1 (first_outputs is void); 

- encode_key is: 

o the identity function for AES-128; nb_for_key=1; 

o the concatenation of the last output and the first 64 bytes of the 

penultimate output of AES-192; nb_for_key=2; 

o the concatenation of the last two outputs AES-256; nb_for_key=2. 

- N_key=5500. This number has been chosen3 as to ensure that the probability that 

all possible inputs of the S-box function are covered for each round key 

computation is greater than 1 −
1

280
. 

- N_input=2 in order to ensure that the 𝑓 function is applied with a different input for 

one iteration (the input is set to first_input at the end of the inner iteration).  

 

Sensitive data within AES implementations 

There are no additional sensitive data other than the ones specified for Block Ciphers. 

Triple-DES 

In addition to the evaluation tasks mentioned in §3.1.1, this section provides additional 

procedures regarding Triple-DES. 

In the case of Triple-DES; [BlockCipher-ConformanceTesting-3] is achieved by 

applying the MCT described in section 2.2.1 with the following details. 

The functions encode_input and encode_key are defined as follows: 

- encode_input is the identity function; nb_for_input=1 (first_outputs is void); 

- encode_key is: 

 

3  This is the sampling with replacement problem. Rather some variant of the coupon 

collector problem. Anyway this reference is insufficient. 
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o the concatenation of the last two outputs, where the parity bit is replaced 

by the right value for each byte; nb_for_key=2 for Triple-DES with two 

keys; 

o the concatenation of the last three outputs, where the parity bit is replaced 

by the right value for each byte; nb_for_key=3 for Triple-DES with three 

keys. 

- N_key=1325. This number has been chosen4 as to ensure that the probability that 

all possible inputs of the S-box function are covered for each round key 

computation is greater than 1 −
1

280
. 

- N_input=2 in order to ensure that the 𝑓 function is applied with a different input for 

one iteration (the input is set to first_input at the end of the inner iteration). 

Indeed, if N_input=1, the new key and the new input are both equal to the last 

output. 

[3DES-ImplementationPitfall-1] The tester shall verify that the number of 

blocks processed by the block cipher with the same key is limited to 227 for Triple-

DES with three keys and 220 for Triple-Des with two keys. 

I1 

or 

I3 

Analysis: This is to avoid collision linked to the block size of the Triple-DES (64 bits). A 

limit exists as well for AES but it is so high that no care is needed. The limit is lowered to 

220 for Triple-DES of two keys because of existing attacks . 

 

Sensitive data within Triple-DES implementations 

This paragraph specifies sensitive data for Triple-DES in addition to the ones specified for 

Symmetric Atomic Primitives. 

Triple-DES encryption algorithm applies the simple DES algorithm three times (in 

encryption and decryption modes). The output of the first and second DES algorithm, 

which are also respectively the input of the second and third DES algorithm application, as 

particular temporary variables, are sensitive. 

3.1.2 Stream Ciphers 

No stream cipher is currently agreed in . 

3.1.3 Hash Functions 

[HashFunctions-AgreedMechanism-1] The tester shall verify that the used 

hash function is agreed . 
I1 

The following hash functions are agreed in : SHA-2 family, SHA3 with 256, 384 and 512-

bit digest lengths. 

 

The functions of the SHA-2 and SHA-3 families, with digest length greater or equal to 256 

bits, are recommended ACMs . The functions SHA-224 and SHA-512 truncated to 224 bits 

are legacy ACMs . SHA-1 is not an agreed hash function but in the MAC construction 

HMAC-SHA-1, it is accepted as a legacy underlying function . 

Hash functions process an input message by splitting it into fixed size blocks. The 

following table summarises the block size for each agreed hash function. The 

implementation of a hash function must be able to correctly generate message digests for 

messages that span multiple data blocks. 

Function digest 

length d 

(in bits) 

block size m  

(in bits) 

SHA-224 224 512  

SHA-256 256 512  

 

4  This is the sampling with replacement problem. 
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SHA-384 384 1024  

SHA-512 512 1024  

SHA-512/224 224 1024  

SHA-512/256 256 1024  

SHA3-256 256 1088 

SHA3-384 384 832 

SHA3-512 512 576 

 

[HashFunctions-ConformanceTesting-1] The tester shall test each hash 

function used in the system.  

I1 

I2 

Analysis: Hash function implementations may vary depending on the length of the digest 

output. 

 

[HashFunctions-ConformanceTesting-2] The tester shall perform the MCT 

defined below. 
I2 

The tester shall use the MCT without key described in section 2.2.1 of this document, 

with: 

- 𝑓 being the hash function; 

- encode_input is the concatenation nb_for_input outputs of the function 𝑓 
truncated in order to get an input with a size exactly equal to the hash function 

block size; 

- nb_for_input=2 for SHA-256, SHA-512 and SHA3-512; nb_for_input=3 for SHA-

224 and SHA-384, SHA3-384; nb_for_input=4 for SHA-512/256; nb_for_input=5 

for SHA-512/224 and SHA3-256. 

- N_input to determine 

 

[HashFunctions-ConformanceTesting-3] The tester shall perform KATs or the 

methodology of §5.1.1 related to hash functions.  
I2 

[HashFunctions-SourceCodeAnalysis-1] The tester shall verify in the source 

code that the implementation is compliant with the specifications. 

The tester shall still use §5.1.1 for source code analysis, as §5.1.1 may contain 

some specific cases. 

I3 

 

Sensitive data within Hash Functions implementations 

The input of the hash function is generally a sensitive data. 

Depending on the mechanism that relies on this primitive, the output of the hash function 

can also be a sensitive data. For example, if the hash function is used to derive an 

encryption key, the output is obviously sensitive. This will be specified in the sections 

related to mechanisms relying on a hash function. 

Also, the knowledge of internal states during the execution of the hash function 

implementation can be used to derive the input or the output. 

If relevant, the amount of information on sensitive data, accessible to an attacker through 

Side-Channel or Perturbation attacks, shall be restrained. Also, sensitive data shall not 

remain, even partially, in the volatile or non-volatile memory after usage. 

 

SHA-2 Family 

There is no additional task specific to SHA-2. 

 

Sensitive data within SHA-2 implementations 

There is no additional data other than the ones specified for Hash functions. 
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SHA-3 Family 

There is no additional task specific to SHA-3. 

 

Sensitive data within SHA-3 implementations 

There are no additional data other than the ones specified for Hash functions. 

3.1.4 Secret Sharing 

Secret sharing schemes aim to distribute a shared secret among several parties in the 

form several key shares. 

[SecretSharing-AgreedMechanism-1] The tester shall verify that the used 

secret sharing mechanism is agreed . 
I1 

Shamir’s scheme is the only agreed secret sharing scheme. 

 

[SecretSharing-ConformanceTesting-1] The tester shall perform KATs or the 

methodology of §5.1.1 related to secret sharing.  
I2 

[SecretSharing-SourceCodeAnalysis-1] The tester shall verify in the source 

code that the implementation is compliant with the specifications. 

The tester shall still use §5.1.1 for implementation representation analysis, as 

§5.1.1 may contain some specific cases. 

I3 

 

 

 

 

[SecretSharing-ConformanceTesting-2] The tester shall test sharing 

generation scheme. 
I2 

 

[SecretSharing-ConformanceTesting-2] The tester shall test sharing 

recombination scheme. 
I2 

 

Sensitive data within Secret Sharing implementations 

The sensitive data are the shared secret and each individual share. 

The amount of information on sensitive data, accessible to an attacker through Side-

Channel or Perturbation attacks, shall be restrained. Also, sensitive data shall not remain, 

even partially, in the volatile or non-volatile memory after usage. 

Shamir’s secret sharing 

No additional tasks for the Shamir’s secret sharing is provided in addition to those 

mentioned in §3.1.4. 

3.2  Multiplication in 𝑮𝑭(𝟐𝟏𝟐𝟖) 
For some mechanisms, multiplications in the field 𝐺𝐹(2128) are required (GCM and GMAC).  

[MultiplicationGF2128-ConformanceTesting-1] The tester shall perform the 

MCT defined below. 
I2 

 

The unkeyed MCT, described in section 2.2.1 of this document, shall be used, for the 

multiplication in 𝐺𝐹(2128) with the following features: 

- the input of the function 𝑓 is a pair of two elements in 𝐺𝐹(2128); 
- 𝑓 is the multiplication of the two elements of the pair; 
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- nb_for_input=2 (first_outputs contains one element) and encode_input is 

simply the construction of a pair (𝑎, 𝑏) with 𝑎 being the penultimate output and 𝑏 
the last output; at each iteration, 𝑎 is the element 𝑏 of the previous iteration and 𝑏 
is the output of the last iteration. 

 

Sensitive data within Multiplication in 𝐺𝐹(2128) implementations 

Depending on the mechanism that relies on this primitive, the sensitive data can be one or 

both operands of the multiplication, or the result of the multiplication. This will be 

specified in the sections related to such mechanisms. The knowledge of two of these 

variables permits to trivially derive the third. 

If relevant, the amount of information on sensitive data, accessible to an attacker through 

Side-Channel or Perturbation attacks, shall be restrained. Also, sensitive data shall not 

remain, even partially, in the volatile or non-volatile memory after usage. 

3.3  Symmetric Constructions 

3.3.1 Symmetric Encryption (Confidentiality Only) 

A symmetric encryption mechanism is built around a primitive, either a block cipher or a 

stream cipher. All agreed encryption mechanism use a block cipher, with an encryption 

mode of operation. 

[SymmetricEncryptionConfOnly-AgreedMechanism-1] The tester shall verify 

that the symmetric encryption scheme is agreed .  
I1 

The following Symmetric Encryption schemes are agreed in : CBC, CBC-CS, CTR, OFB, 

CFB. They do not ensure the integrity of the protected data. 

A symmetric encryption mode is defined by a block cipher, a mode of operation, and 

possibly a padding scheme. The padding scheme adds data to a plaintext of arbitrary 

length to ensure that its size becomes a multiple of the block size. The padding scheme is 

generally used for the CBC mode. Indeed, a padding is unnecessary for the other agreed 

modes since the last cipher block can be truncated for CTR, OFB and CFB (the decryption 

operation does not require a full final block for decryption), and CBC-CS has been 

especially designed to dispense the use of padding. 

 

[SymmetricEncryptionConfOnly-AgreedMechanism-2] The tester shall verify 

that the block cipher used by the symmetric encryption scheme is agreed. 
I1 

 

[SymmetricEncryptionConfOnly-AgreedMechanism-3] The tester shall 

analyse the rational of the absence of ciphertext integrity provided by the 

developer to determine if the scheme does not bring any threat to the assets of 

the system. 

I1 

Analysis: Absence of ciphertext integrity may be a critical threat in some systems. The 

tester shall verify that the attacker cannot modify the ciphertexts or that any modification 

of ciphertexts does not comprise the system. This is a general task that is not more 

detailed this task strongly depends on the system being tested. An example of such 

vulnerabilities are the EFAIL vulnerabilities. 

 

[SymmetricEncryptionConfOnly-ConformanceTesting-1] The tester shall 

perform the conformance tests of the underlying block cipher. 

I1 

I2 

 

[SymmetricEncryptionConfOnly-ConformanceTesting-2] The tester should 

test all the directions of operation, encryption or decryption, used in the system. 

I1 

I2 

Analysis: The analysis is the same as [BlockCipher-ConformanceTesting-2]. 
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[SymmetricEncryptionConfOnly-ConformanceTesting-3] The tester shall 

perform KATs or the methodology of §5.1.3.1 related to symmetric encryption 

mechanisms.  

I2 

[SymmetricEncryptionConfOnly-SourceCodeAnalysis-1] The tester shall 

verify in the source code that the implementation is compliant with the 

specifications. 

The tester shall still use §5.1.3.1 for implementation representation analysis, as 

§5.1.3.1 may contain some specific cases. 

I3 

 

[SymmetricEncryptionConfOnly-ImplementationPitfall-1] The tester shall 

determine whether the implementation ensures that the expected property of the 

Initial Vector or the counters is satisfied. 

For CBC, CBC-CS and CFB modes, the IV must be unpredictable. 

For the OFB mode, the IV must only be unique for each encryption process. In this 

case, the IV is called nonce. 

For the CTR mode, the counters shall be generated in such a way that all counters 

are unique across all plaintexts (and not only within a single plaintext). 

I1 

or 

I3 

Analysis: For OFB, reusing a nonce with the same key voids the confidentiality guarantee 

of the mode. For the CTR mode, the standard  specifies input blocks that are encrypted to 

produce the key stream. Using a counter twice also voids the confidentiality guarantee of 

the mode. Appendix B of  recommends two methods to generate such counters. Also, the 

generation method of the first counter and the next counters for GCM  is more formal and 

accurate. This method can be used for the CTR mode as well. In this case, the first 

counter is generated from the concatenation of an IV and a counter buffer initialized with 

zero. For this method, unicity of the IV guarantees the unicity of all counters (if there is 

no overflow in the counter buffer, see [GCM-AgreedMechanism-1] and [GCM-

ImplementationPtifalls-1]). 

For CBC, CBC-CS and CFB, reusing an IV with the same key leaks some information about 

the first block of the message. In addition, it must be unpredictable .  recommends, in 

Appendix C, two methods to generate unpredictable IV. The first method is to generate an 

IV by encrypting a nonce with the same key that is used for the encryption of the 

plaintext. The second method is to generate a random IV with a strong DRG. 

Over all, especially for stream modes of operation, care shall be taken when a nonce or IV 

is chosen at random. This is due to the birthday paradox. As an example, if a nonce or IV 

of size 64 bits is chosen (for example for Triple-DES, or if a random nonce of size 64 bits 

is concatenated with a 64 bits buffer block), then the probability of collision is greater than 

2−32 after 92681 draws. The number of draws correspond to the number of messages being 

encrypted. Thus the possible number of messages encrypted with the same key shall be 

analysed to conclude for this task. For 96 bits, the probability that a collision occurs is 

greater than 2−32 after 6074000999 draws, which can be an issue for very long lifetime 

keys. 

Determining whether each nonce is unique and each IV is unique and unpredictable is not 

achievable through known answer tests. It rather requires an analysis of the cryptographic 

specifications rationale of the implementation, possibly supported by a source code 

analysis. 

 



 

24 

[SymmetricEncryptionConfOnly-ImplementationPitfall-2] The tester shall 

verify that an attacker has no access to the correctness of the padding or format of 

the deciphered ciphertext5 of arbitrary ciphertexts, chosen by the attacker. 

I1 

or 

I3 

Analysis: This applies in particular to schemes with paddings and the attack is then called 

a padding oracle attack . However, this task more generally applies to all schemes if any 

verification is performed on the format of the deciphered ciphertext. In this case, the 

attack is called format oracle attack. Such attacks can be used to decrypt any ciphertext. 

It is pointed out that these attacks can be mounted if the attacker is able to submit 

arbitrary data to be deciphered. 

 

[SymmetricEncryptionConfOnly-ImplementationPitfall-3] If the underlying 

block primitive is the Triple-DES, the tester shall verify that the number of blocks 

processed by the block cipher with the same key is limited to 227 for Triple-DES 

with three keys and 220 for Triple-DES with two keys. 

I1 

or 

I3 

Analysis: This results from [3DES-ImplementationPitfall-1]. Indeed, for all modes 

described below, except CTR, the input of each encryption block is unpredictable. Hence, 

this is to avoid any collision. This number has to be taken into account across all 

messages encrypted with the same key. Hence, the size of messages being encrypted 

and the number of messages have to be taken into account in the calculation. 

 

Sensitive data within Symmetric Encryption (Confidentiality Only) 

implementations 

Symmetric Encryption relies on a block cipher where the key and the plaintext are both 

sensitive. Hence, the tester can refer to §3.1.1 for sensitive data related to block ciphers. 

In addition, as described in the task [SymmetricEncryptionConfOnly-

ImplementationPitfall-2], information on the deciphered ciphertexts format of arbitrary 

ciphertexts may be used to recover the plaintext of any ciphertext. Such information shall 

not be accessible to an attacker either by direct error code, as stated in the task, or by 

Side-Channel attacks, particularly timing attacks. 

Furthermore, as mentioned in [SymmetricEncryptionConfOnly-

ImplementationPitfall-1], some properties have to be satisfied by initialization vectors 

and counters on the encryption side. As a consequence, they constitute sensitive data in 

the integrity sense.  

CTR 

In addition to the evaluation tasks mentioned in §3.3.1, this section provides additional 

procedures regarding CTR. 

 

[CTR-ImplementationPitfall-1] The tester shall analyse the counter block and 

verify that it is unique for each plaintext block that is encrypted under a given key. 

I1 

or 

I3 

Analysis:  Appendix B.2 provides two methods to select the initial counter value for the 

counter mode as to satisfy this uniqueness requirement. 

[SymmetricEncryptionConfOnly-ImplementationPitfall-1] can be ignored because of 

[CTR-ImplementationPitfall-1]. 

 

Sensitive data within CTR implementations 

 

5  The term “deciphered ciphertext” has been deliberately chosen. It corresponds to 

the output blocks when applying the decryption mode of operation. It is equal to the 

“plaintext” if no padding is used. It is equal to the “padded plaintext” if a padding is used 

in the scheme, with possibly an incorrect padding.  
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This paragraph specifies sensitive data for CTR in addition to the ones specified for 

Symmetric Encryption. 

CTR is a stream mode of operation. Consequently, each output of the block cipher is a 

sensitive data as its knowledge permits to trivially derive the plaintext. Thus, this shall be 

considered when referring to §3.1.1. 

Since a key stream is generated that is XORed to the plaintext during encryption, the 

inputs of the XOR operations are sensitive. During decryption, one input (the key stream) 

and the output of the XOR operations are sensitive. 

OFB 

There is no additional task specific to OFB. 

 

Sensitive data within OFB implementations 

This paragraph specifies sensitive data for OFB in addition to the ones specified for 

Symmetric Encryption. 

OFB is a stream mode of operation. Consequently, each output of the block cipher is a 

sensitive data as their knowledge permit to trivially derive the plaintext. Thus, this shall 

be considered when referring to §3.1.1. 

As the CTR mode, since a key stream is generated that is XORed to the plaintext during 

encryption, the inputs of the XOR operations are sensitive. During decryption, one input 

(the key stream) and the output of the XOR operations are sensitive. 

CBC 

There is no additional task specific to CBC. 

 

Sensitive data within CBC implementations 

There are no additional sensitive data other than the ones specified for Symmetric 

Encryption. 

CBC-CS 

There is no additional task specific to CBC-CS. 

 

Sensitive data within CBC-CS implementations 

There are no additional sensitive data other than the ones specified for Symmetric 

Encryption. 

CFB 

There is no additional task specific to CFB. 

 

Sensitive data within CFB implementations 

This paragraph specifies sensitive data for CFB in addition to the ones specified for 

Symmetric Encryption. 

CFB is a self-synchronizing stream mode of operation. Hence, as for stream modes of 

operations, each output of the block cipher is a sensitive data as its knowledge permits to 

trivially derive the plaintext. Thus, this shall be considered when referring to §3.1.1. 

As stream modes of operation, since a key stream is generated that is XORed to the 

plaintext during encryption, the inputs of the XOR operations are sensitive. During 
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decryption, one input (the key stream) and the output of the XOR operations are 

sensitive. 

3.3.2 Symmetric Disk Encryption 

[DiskEncryption-AgreedMechanism-1] The tester shall verify that the disk 

encryption scheme is agreed . 
I1 

The following Disk Encryption schemes are agreed in : XTS and CBC-ESSIV. 

 

[DiskEncryption-AgreedMechanism-2] The tester shall verify that the 

underlying primitives used by the disk encryption scheme are agreed. 
I1 

 

[DiskEncryption-ConformanceTesting-1] The tester shall perform the 

conformance tests of the underlying primitives. 

I1 

I2 

 

[DiskEncryption-ConformanceTesting-2] The tester should test all the 

directions of operation, encryption or decryption, used by the system. 

I1 

I2 

 

[DiskEncryption-ConformanceTesting-3] The tester shall perform KATs or the 

methodology of §0 related to disk encryptions.  
I2 

[DiskEncryption-SourceCodeAnalysis-1] The tester shall verify in the source 

code that the implementation is compliant with the specifications. 

The tester shall still use §0 for implementation representation analysis, as §0 may 

contain some specific cases. 

I3 

 

 

[DiskEncryption-ImplementationPitfall-1] If the underlying block primitive is 

the Triple-DES, the tester shall verify that the number of blocks processed by the 

block cipher with the same key is limited to 227 for Triple-DES with three keys and 

220 for Triple-DES with two keys.  

I1 

or 

I3 

Analysis: This results from [3DES-ImplementationPitfall-1]. Indeed, for all modes 

described below, the input of each encryption block is unpredictable. Hence, this is to 

avoid any collision. 

 

[DiskEncryption-ImplementationPitfall-1] The tester shall determine whether 

the implementation ensures that the tweak value (for XTS) or sector number (for 

CBC-ESSIV) is unique for each encryption with the same key. 

I1 

or 

I3 

Analysis: Indeed, like a nonce, the tweak value must be unique and the sector number is 

encrypted to produce an IV that must be unpredictable. This is similar to 

[SymmetricEncryptionConfOnly-ImplementationPitfall-1]. 

The tweak value is usually derived from the address where the ciphertext is stored, and 

the sector number is usually derived from the address where the sector is stored. 

Extra care shall be applied for storage devices or disk drivers which determine the used 

tweak or the sector number from logical address rather than physical address. 

 

Sensitive data within Symmetric Disk Encryption implementations 

Symmetric Encryption relies on a block cipher where the key and the plaintext are both 

sensitive. Hence, the tester can refer to §3.1.1 for sensitive data related to block ciphers. 

Additionally tweak values on the encryption side are sensitive in an integrity sense. 
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XTS 

In addition to the evaluation tasks mentioned in §3.3.2, this section provides additional 

procedures regarding XTS. 

 

XTS supports different key lengths (256 and 512 bits) and data unit lengths (data 

complete block sizes, partial block sizes, the largest block size supported by the 

implementation), various formats for the tweak value (random 128-bit hexadecimal string 

or Data Unit Sequence Number (base-10 number between 0 and 255)). As a consequence, 

the supported variants of the algorithm shall be considered as independent algorithms, 

and shall all be tested. 

For the task [DiskEncryption-ConformanceTesting-3], the appendix of this document 

lists KATs that shall be used for this mechanism. 

 

Sensitive data within XTS implementations 

In addition to the sensitive data specified for Symmetric Disk Encryption, the encrypted 

tweak values are sensitive data in the confidentiality sense. 

CBC-ESSIV 

In addition to the evaluation tasks mentioned in §3.3.2, this section provides additional 

procedures regarding CBC-ESSIV. 

 

For [DiskEncryption-AgreedMechanism-2] and [DiskEncryption-

ConformanceTesting-1], the underlying primitives of CBC-ESSIV are: 

- a block cipher; 

- a hash function. 

 

[CBC-ESSIV-AgreedMechanism-2] The tester shall determine that the 

malleability of the CBC mode does not bring any flaw in the system. 

I1 

or 

I3 

Analysis: Due to the malleability of the CBC mode, attacks as  are possible. While XTS 

provides no integrity and thus offers no inherent immunity against similar security issues, 

it is less malleable than CBC-ESSIV. 

 

Sensitive data within CBC-ESSIV implementations 

This paragraph specifies sensitive data for CBC-ESSIV in addition to the ones specified for 

Symmetric Disk Encryption. 

In CBC-ESSIV, the IV of a sector number is generated as 𝐸𝑠(𝑆𝑁) where: 

- 𝐸𝑠 is the encryption using a block cipher and the key 𝑠; 
- 𝑠 is the digest of the encryption key; 

- 𝑆𝑁 is the sector number. 

Therefore, during the computation of 𝑠, the input and the output of the hash function are 

sensitive and shall not be accessible by an attacker. Hence, the tester can refer to §3.1.3 

for sensitive data related to hash function where the input and output are sensitive. 

 

TH-comments until this position (03.05.2019) 

-------------------------------------------------------- 
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3.3.3 Message Authentication Code 

Message Authentication Code (MAC) can be based on a block cipher or a hash function. 

[MAC-AgreedMechanism-1] The tester shall verify that the Message 

Authentication Code scheme is agreed . 
I1 

The following MACs are agreed in : CMAC, CBC-MAC, HMAC and GMAC. 

 

[MAC-AgreedMechanism-2] The tester shall verify that the underlying primitives 

of the MAC are agreed. 
I1 

Exception: Even though SHA-1 is not an agreed primitive since is not considered as an 

acceptable general purpose hash function, HMAC-SHA-1 is considered for the time being 

as an acceptable legacy mechanism . 

 

[MAC-AgreedMechanism-3] If the MAC of the agreed mechanism is truncated, 

the tester shall verify that the truncated MAC is larger than 96 bits. 

I1 

or 

I3 

Analysis: It is a common practice to truncate the result of a MAC scheme. The truncated 

MAC shall be larger than 96 bits for the scheme to be agreed. 

Exception 1: This note does not apply for GMAC where no truncation is allowed. 

Exception 2: If the number of MAC verifications performed for a given key can be 

bounded by 230, the limit of 96 bits is lowered to 64 bits. Note that this is a legacy bound 

and a MAC larger than 96 bits is still recommended. 

 

[MAC-ConformanceTesting-1] The tester shall perform the conformance tests of 

the underlying primitives. 

I1 

I2 

 

[MAC-ConformanceTesting-2] The tester shall perform KATs or the 

methodology of §5.1.3.3 related to MAC.  
I2 

[MAC-SourceCodeAnalysis-1] The tester shall verify in the source code that the 

implementation is compliant with the specifications. 

The tester shall still use §5.1.3.3 for implementation representation analysis, as 

§5.1.3.3 may contain some specific cases. 

I3 

 

Sensitive data within MACs implementations 

The sensitive data is the key. Depending on the usage of the MAC, the input or the output 

can be sensitive as well. 

If relevant, the amount of information on sensitive data, accessible to an attacker through 

Side-Channel or Perturbation attacks, shall be restrained. Also, sensitive data shall not 

remain, even partially, in the volatile or non-volatile memory after usage. 

CMAC 

In addition to the evaluation tasks mentioned in §3.3.3, this section provides additional 

procedures regarding CMAC. 

For [MAC-AgreedMechanism-2] and [MAC-ConformanceTesting-1], the underlying 

primitive of CMAC is a block cipher. 

 

[CMAC-ImplementationPitfall-1] The tester shall verify that the number of 

blocks processed by the block cipher with the same key is limited to 2
𝑛

2
−5 (with 𝑛 

being the block size in bits). 

I1 

or 

I3 

Analysis: The number of blocks processed by the block cipher is the number of blocks 

being authenticated. This results from [3DES-ImplementationPitfall-1]. Indeed, the 
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input of each encryption block is unpredictable. Hence, this is to avoid any collision. It is 

recalled that it is not an issue for AES: this limit is very high. 

 

Sensitive data within CMAC implementations 

This paragraph specifies sensitive data for CMAC in addition to the ones specified for 

MACs. 

CMAC relies on a block cipher where the key 𝐾 is sensitive. A sensitive key 𝐾0 is derived 

from the initial key by encrypting a constant message with 𝐾. Hence, the tester can refer 

to §3.1.1 for sensitive data related to block ciphers where the key and the output are 

sensitive. 

Then, two keys 𝐾1, 𝐾2 are derived from 𝐾0 using shift and XOR operations. 𝐾1 and 𝐾2 play a 

part in the MAC generation process using again XOR operations with intermediate values. 

Hence, those keys are obviously sensitive. The input and output of shift operations are 

sensitive. The inputs and output of the XOR operations are sensitive as well. 

CBC-MAC 

In addition to the evaluation tasks mentioned in §3.3.3, this section provides additional 

procedures regarding CBC-MAC. 

For [MAC-AgreedMechanism-2] and [MAC-ConformanceTesting-1], the underlying 

primitive of CBC-MAC is a block cipher. 

 

[CBCMAC-ImplementationPitfall-1] The tester shall verify that the size of all 

the inputs for which CBC-MAC is computed under the same key is the same. 

I1 

or 

I3 

Analysis: Otherwise, the attacker can trivially forge MAC with two know pairs (message, 

MAC). 

 

[CBCMAC-ImplementationPitfall-2] If the underlying block primitive is the 

Triple-DES, the tester shall verify that the number of blocks processed by the block 

cipher with the same key is limited to 227 for Triple-DES with three keys and 220 for 

Triple-DES with two keys. 

I1 

or 

I3 

Analysis: The number of blocks processed by the block cipher is the number of blocks 

being authenticated. This results from [3DES-ImplementationPitfall-1]. Indeed, the 

input of each encryption block is unpredictable. Hence, this is to avoid any collision. 

 

Sensitive data within CBC-MAC implementations 

This paragraph specifies sensitive data for CBC-MAC in addition to the ones specified for 

MACs. 

CBC-MAC relies on a block cipher where the key is sensitive. Depending on the usage of 

the scheme, the input and output blocks can be sensitive as well. Hence, the tester can 

refer to §3.1.1 for sensitive data related to block ciphers. 

HMAC 

For [MAC-AgreedMechanism-2] and [MAC-ConformanceTesting-1], the underlying 

primitive of HMAC is a hash function. 

 

Sensitive data within HMAC implementations 

This paragraph specifies sensitive data for HMAC in addition to the ones specified for 

MACs. 



 

30 

HMAC relies on a hash function. The computation of HMAC of a message 𝑚 given a key 𝐾 

and a hash function 𝐻 is as follows: 

𝐻𝑀𝐴𝐶(𝐾,𝑚) = 𝐻 ((𝐾′ ⊕ 𝑜𝑝𝑎𝑑) ∨ 𝐻((𝐾′ ⊕ 𝑖𝑝𝑎𝑑) ∨ 𝑚)) 

with 𝐾′ = 𝐻(𝐾) if 𝐾 is larger than the hash function block size and 𝐾′ = 𝐾 otherwise. 

From this construction, obviously, the sensitive data are: 

- 𝐾; 

- 𝐾′ (and hence the output of the hash function if 𝐾 is larger than the hash function 

block size); 

- 𝐾′ ⊕ 𝑜𝑝𝑎𝑑 and 𝐾′ ⊕ 𝑖𝑝𝑎𝑑; 

- 
(𝐾′ ⊕ 𝑖𝑝𝑎𝑑)

𝐻
. 

Hence, the tester can refer to §3.1.3 for sensitive data related to hash functions where the 

input and the output are sensitive. The current state of the hash function is also 

particularly sensitive. Indeed, since hash functions process the input blocks, the 

knowledge of the state of the hash function after processing 𝐾′ ⊕𝑜𝑝𝑎𝑑 and, in another 

hash function instance, 𝐾′ ⊕ 𝑖𝑝𝑎𝑑, is enough to produce MACs of arbitrary plaintexts [BBD+. 

GMAC 

In addition to the evaluation tasks mentioned in §3.3.3, this section provides additional 

procedures regarding GMAC. 

For [MAC-AgreedMechanism-2] and [MAC-ConformanceTesting-1], the underlying 

primitives of GMAC are: 

- a block cipher; 

- the multiplication in 𝐺𝐹(2128). 

 

[GMAC-AgreedMechanism-1] The tester shall verify that the IV is not reused to 

protect different pairs (plaintext, associated data) under the same key. 

I1 

or 

I3 

Analysis:  reminds that the IV must be managed within the security perimeter of the 

authenticated encryption process. For example, it is crucial to ensure that no adversary 

can cause the same IV to be reused to protect different (plaintext, associated data) pairs 

under the same key. 

 

[GMAC-AgreedMechanism-2] The tester shall verify that the IV is 96 bits long 

and built according to the deterministic construction specified in Section 8.2.1 of . 

I1 

or 

I3 

 

[GMAC-AgreedMechanism-3] The tester shall verify that the MAC length is 128 

bits long and is not truncated. 

I1 

or 

I3 

 

Sensitive data within GMAC implementations 

This paragraph specifies sensitive data for GMAC in addition to the ones specified for 

MACs. 

GMAC relies on a block cipher and the multiplication in 𝐺𝐹(2128). The MAC generation relies 

on a secret 𝐻 derived from the authentication key 𝐾 computed as 𝐸𝐾(0
128) where: 

- 𝐸𝐾 is the encryption using a block cipher and the key 𝐾; 

- 0128 is the message consisting of 128 zero bits. 
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The value 𝐻 is a sensitive data as its knowledge permits to authenticate arbitrary 

plaintexts6. This value is used as an operand to the multiplication in 𝐺𝐹(2128). 

Hence, because of the sensitive data 𝐻, the tester can refer to §3.1.1 for sensitive data 

related to block ciphers where the key and the output is sensitive, and to §3.2 where both 

operands are sensitive. 

3.3.4 Symmetric Entity Authentication 

These schemes aim to authenticate an entity, and may either be derived using a MAC 

scheme or an encryption scheme in a random challenge-response protocol. 

[EntityAuthentication-AgreedMechanism-1] The tester shall verify that the 

MAC or block cipher used in the symmetric entity authentication scheme is agreed 

. 

I1 

or 

I3 

 

[EntityAuthentication-AgreedMechanism-2] Authentication generally consists 

in a challenge-response protocol. Therefore, the tester shall verify that the size of 

the challenge is greater than 96 bits . 

I1 

or 

I3 

Analysis: This limit is for legacy agreed mechanisms.  recommends a challenge of size 

greater than 125 bits. 

 

[EntityAuthentication-ConformanceTesting-1] The tester shall perform the 

conformance testing of the underlying mechanisms. 

I1 

I2 

3.3.5 Symmetric Authenticated Encryption 

Authenticated Encryptions (AE) provide confidentiality, integrity and data origin 

authentication of plaintexts. The decryption operation of an AE provides the plaintext if 

the ciphertext is valid, i.e. the integrity and authenticity has been checked. Additionally, in 

GCM, a input called additional data is an optional input. This additional data is considered 

when computing the MAC and therefore is protected in integrity and authenticity. 

In all AE mechanisms considered in this section this security service is offered either: 

- by the combination of two mechanisms: a symmetric encryption and a MAC 

mechanism, or 

- by design with a specific mode of operation and one underlying primitive: a block 

cipher. 

 

[AuthenticatedEncryption-AgreedMechanism-1] The tester shall verify that 

the Authenticated Encryption scheme is agreed . 
I1 

The following Authenticated Encryption schemes are agreed in : Encrypt-then-MAC, CCM, 

GCM, EAX, MAC-then-Encrypt and Encrypt-and-MAC. 

 

[AuthenticatedEncryption-AgreedMechanism-2] The tester shall verify that 

the underlying primitives of the Authenticated Encryption scheme are agreed . 
I1 

 

[AuthenticatedEncryption-ConformanceTesting-1] The tester should test all 

the implemented directions of encryption operation. 

I1 

I2 

 

 

 

6  The procedure is actually not that straightforward. However, for all intended 

purposes, in this document, the data H is considered sensitive for it can eventually lead to 

forgeries. 
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[AuthenticatedEncryption-ConformanceTesting-2] The tester shall perform 

KATs or the methodology of §5.1.3.4 related to AE. 

The tester shall test correct and incorrect MAC values. 

I2 

[AuthenticatedEncryption-SourceCodeAnalysis-1] The tester shall verify in 

the source code that the implementation is compliant with the specifications. 

The tester shall still use §5.1.3.4 for implementation representation analysis, as 

§5.1.3.4 may contain some specific cases. 

I3 

 

 

[AuthenticatedEncryption-ImplementationPitfall-1] If the integrity of the 

ciphertext is not properly checked before decryption, the tester shall verify that the 

attacker cannot access to the specific error condition (format error or MAC error) 

that can occur in the system. 

I1 

or 

I3 

Analysis: This applies to schemes with paddings in order to avoid so called padding 

oracle attacks . However, the task applies to all schemes if any verification is performed 

on the format of the deciphered ciphertext and if the deciphered ciphertexts are sent to 

consuming applications. Such verifications may lead to format oracle attack. 

 

Sensitive data within Symmetric Authenticated Encryption implementations 

As described in the task [AuthenticatedEncryption-ImplementationPitfall-1], 

information on the format of the deciphered ciphertexts of arbitrary ciphertexts can be 

used to recover the plaintext of any ciphertext. Such information shall not be accessible 

by an attacker, neither by direct error code, as stated in the task, nor by Side-Channel 

attacks, particularly timing attacks. If the MAC verification is not performed before 

decryption, one commonly used countermeasure is to perform a dummy MAC verification 

when the decryption has failed. 

3.3.5.1 AE – Combination of Symmetric Encryption 

(Confidentiality Only) and MAC 

Encrypt-then-MAC, MAC-then-Encrypt and Encrypt-and-MAC are AEs that combine a 

Symmetric Encryption (Confidentiality Only) and a MAC. 

 

[AuthenticatedEncryptionCombination-AgreedMechanism-1] The tester 

shall check the combination of the encryption and MAC is agreed . 
I1 

Analysis: Encrypt-then-MAC scheme is a recommended AE in . Encrypt-and-MAC and 

MAC-then-Encrypt are acceptable legacy schemes in . 

 

[AuthenticatedEncryptionCombination-AgreedMechanism-2] The tester 

shall check the keys used for encryption and MAC operations are different. 

I1 

or 

I3 

 

[AuthenticatedEncryptionCombination-ConformanceTesting-2] The tester 

shall perform the conformance tests of the underlying mechanisms (encryption and 

MAC). 

I1 

I2 

 

[AuthenticatedEncryptionCombination-ImplementationPitfall-1] All 

implementation pitfalls of the underlying mechanisms shall be considered. 

I1 

or 

I3 

Analysis: Pitfalls of §3.3.1 and §3.3.3 shall be considered. 

 

Sensitive data within AE – Combination of Symmetric Encryption (Confidentiality 

Only) and MAC implementations 
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Additional sensitive data are specified below for each individual AE.  

Encrypt-then-MAC 

There is no additional task specific to Encrypt-then-MAC. 

 

Sensitive data within Encrypt-then-MAC implementations 

This paragraph specifies sensitive data for Encrypt-then-MAC in addition to the ones 

specified for AEs. 

This scheme relies on a symmetric encryption scheme and a MAC. Hence, the tester can 

refer to §3.3.1 for sensitive data related to the underlying symmetric encryption and to 

§3.3.3 for sensitive data related to the underlying MAC where only the key is sensitive 

(the input and the output of the MAC are not sensitive). 

Encrypt-and-MAC 

In addition to the evaluation tasks mentioned in §3.3.5 and §3.3.5.1, this section provides 

additional procedures regarding Encrypt-and-MAC. 

For the task [AuthenticatedEncryption-ConformanceTesting-2], the appendix of this 

document lists KATs that shall be used for this mechanism. 

 

[AMOSSYS: to be discussed. Should the following task appear in ACM?] 

[EncryptAndMAC-AgreedMechanism-1] The tester shall verify that the 

confidentiality of the plaintexts is not compromised because of the deterministic 

MAC value. 

I1 

Analysis: If plaintexts are non-random messages (such as small human readable texts) 

or very small random messages (less than 112 bits long), an attacker can mount 

dictionary attacks with known pairs (plaintext, MAC value). 

MACs are generally deterministic schemes. Only GMAC can be made probabilistic if a 

random nonce is generated for each MAC generation. 

 

Sensitive data within Encrypt-and-MAC implementations 

This paragraph specifies sensitive data for Encrypt-and-MAC in addition to the ones 

specified for AEs. 

This scheme relies on a symmetric encryption scheme and a MAC. Hence, the tester can 

refer to §3.3.1 for sensitive data related to the underlying symmetric encryption and to 

§3.3.3 for sensitive data related to the underlying MAC where the key and the input are 

sensitive. 

Note that if [EncryptAndMAC-AgreedMechanism-1] is correctly applied, the MAC is 

not sensitive. 

MAC-then-Encrypt 

There is no additional task specific to MAC-then-Encrypt. 

 

Sensitive data within MAC-then-Encrypt implementations 

This paragraph specifies sensitive data for MAC-then-Encrypt in addition to the ones 

specified for AEs. 

This scheme relies on a symmetric encryption scheme and a MAC. Hence, the tester can 

refer to §3.3.1 for sensitive data related to the underlying symmetric encryption and to 

§3.3.3 for sensitive data related to the underlying MAC where the key and the input are 

sensitive. The output of the MAC may be sensitive as well since its knowledge can provide 
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information on the plaintext. Indeed, the computation of the MAC is deterministic (except 

for GMAC) and hence dictionary attacks can be mounted if the attacker knows the output 

of the MAC, as described in task [EncryptAndMAC-AgreedMechanism-1] above. 

3.3.5.2 AE – Encryption designed with Authentication 

CCM, GCM and EAX are encryption schemes specifically designed to provide 

confidentiality, integrity and authentication. They rely on a block cipher primitive. 

[AuthenticatedEncryptionMode-AgreedMechanism-1] The tester shall verify 

that the underlying primitives are agreed . 
I1 

 

[AuthenticatedEncryptionMode-ConformanceTesting-1] The tester shall 

perform the conformance tests of the underlying primitives. 

I1 

I2 

 

Sensitive data within AE – Encryption designed with Authentication 

implementations 

Additional sensitive data are specified below for each individual AE.  

CCM 

In addition to the evaluation tasks mentioned in §3.3.5, this section provides additional 

procedures regarding CCM. 

For [AuthenticatedEncryptionMode-AgreedMechanism-1] and 

[AuthenticatedEncryptionMode-ConformanceTesting-1], the underlying primitive of 

CCM is a block cipher. 

 

For [AuthenticatedEncryption-ImplementationPitfall-1], it must be not possible for 

attacker to distinguish whether the error message results from Step 7 of the decryption 

operation specified in §6.2 of NIST  (validity check of nonce N, associated data A and 

payload P) or from Step 10 (invalid value T). 

 

[CCM-ImplementationPitfall-1] All implementation pitfalls of the CTR mode and 

CBC-MAC shall be considered. 

I1 

or 

I3 

Analysis: CCM relies on the CTR mode (§3.3.1) for encryption and CBC-MAC mechanism 

(§3.3.3) for authentication. 

 

Sensitive data within CCM implementations 

This paragraph specifies sensitive data for CCM in addition to the ones specified for AEs. 

The CCM mode is merely the combination of the CTR mode for encryption and CBC-MAC 

for authentication. The reader shall refer to the corresponding sections for sensitive data 

within this mechanism implementation. 

GCM 

In addition to the evaluation tasks mentioned in §3.3.5, this section provides additional 

procedures regarding GCM. 

For [AuthenticatedEncryptionMode-AgreedMechanism-1] and 

[AuthenticatedEncryptionMode-ConformanceTesting-1], the underlying primitives of 

GCM are: 

- a block cipher; 

- the multiplication in 𝐺𝐹(2128). 
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[GCM-AgreedMechanism-1] The tester shall verify that the IV is 96 bits long 

and built according to the deterministic construction specified in Section 8.2.1 of . 

I1 

or 

I3 

Analysis: As the CTR mode, each counters used across all messages encrypted with the 

same key must be unique. Using two identical counters with the same key voids the 

confidentiality guarantee of the mode. 

 

[GCM-AgreedMechanism-2] The tester shall verify that the MAC length in GCM 

schemes is 128 bits long and cannot be truncated. 

I1 

or 

I3 

  

[GCM-ImplementationPitfall-1] The tester shall verify that no message of 

length strictly greater than 232 − 2 blocks can be encrypted.  

I1 

or 

I3 

Analysis: The counters are generated with the concatenation of a unique IV of 96 bits 

and an incremented counter denoted on 32 bits. This task avoids the overflow of the 

counter. 

 

[GCM-ImplementationPitfall-2] The tester shall verify that an IV can never be 

reused in encryption under the same key with differing inputs. 

I1 

or 

I3 

Analysis: GCM relies on the CTR mode. Then, [SymmetricEncryptionConfOnly-

ImplementationPitfall-1] shall be considered. 

 

Sensitive data within GCM implementations 

This paragraph specifies sensitive data for GCM in addition to the ones specified for AE. 

GCM relies on a block cipher and the multiplication in 𝐺𝐹(2128).  

The ciphertext processes the plaintext in a stream mode. Consequently, each output of 

the block cipher is a sensitive data as its knowledge permits to trivially derive the 

plaintext. Thus, this shall be considered when referring to §3.1.1. 

The MAC generation relies on a secret 𝐻 derived from the authentication key 𝐾 computed 

as 𝐸𝐾(0
128) where: 

- 𝐸𝐾 is the encryption using a block cipher and the key 𝐾; 

- 0128 is the message consisting of 128 zero bits. 

The value 𝐻 is a sensitive data as its knowledge permits to authenticate any arbitrary 

ciphertext and additional data7. This value is used as an operand to the multiplication in 

𝐺𝐹(2128). 

Hence, because of the sensitive data 𝐻, the tester can refer to §3.1.1 for sensitive data 

related to block ciphers where the key and the output are sensitive, and to §3.2 where 

one (𝐻 or both (𝐻 and the additional data if present) operands are sensitive. 

Also, as all stream modes, since a key stream is generated that is XORed to the plaintext 

during encryption, the inputs of the XOR operations are sensitive. During decryption, one 

input (the key stream) and the output of the XOR operations are sensitive. 

EAX 

In addition to the evaluation tasks mentioned in §3.3.5, this section provides additional 

procedures regarding EAX. 

 

7  The procedure is actually not that straightforward. However, for all intended 

purposes, in this document, the data H is considered sensitive for it can eventually lead to 

forgeries.. 
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[EAX-ImplementationPitfall-1] All implementation pitfalls of the CTR mode and 

CMAC shall be considered. 

I1 

or 

I3 

Analysis: EAX relies on the CTR mode (§3.3.1) for encryption and OMAC mechanism 

(which is very similar or equivalent to CMAC: §3.3.3) for authentication. 

 

Sensitive data within EAX implementations 

This paragraph specifies sensitive data for EAX in addition to the ones specified for AE. 

The EAX mode is merely the combination of the CTR mode for encryption and CMAC for 

authentication. The reader shall refer to the corresponding sections for sensitive data 

within this mechanism implementation. 

3.3.6 Key Protection 

Key protection schemes aim to securely store or transmit cryptographic key. 

[KeyProtection-AgreedMechanism-1] The tester shall verify that the used Key 

Protection scheme is agreed . 
I1 

The following Key Protection schemes are agreed in : SIV and AES-Keywrap. 

 

[KeyProtection-ConformanceTesting-1] The tester shall perform KATs or the 

methodology of §5.1.3.5 related to Key Protection. 
I2 

[KeyProtection-SourceCodeAnalysis-1] The tester shall verify in the source 

code that the implementation is compliant with the specifications. 

The tester shall still use §5.1.3.5 for implementation representation analysis, as 

§5.1.3.5 may contain some specific cases. 

I3 

 

Sensitive data within Key protection scheme implementations 

In Key Protection schemes, the protected key and the key to protect it are obviously 

sensitive. Hence, the reader can refer to §3.1.1 for sensitive data related to block ciphers. 

SIV 

In addition to the evaluation tasks mentioned in §3.3.6, this section provides additional 

procedures regarding SIV. 

 

[SIV-AgreedMechanism-1] When the SIV scheme uses associated data, the 

tester shall verify that at most 𝑛 − 2 associated data components are used as 

inputs of the SIV scheme , where 𝑛 denotes the block size of the underlying block 

cipher. 

I1 

or 

I3 

Analysis: As AES is the only underlying function in SIV specification  limits the number of 

associated data to 126. 

 

[SIV-ImplementationPitfall-1] All implementation pitfalls of the CTR mode and 

CMAC shall be considered. 

I1 

or 

I3 

Analysis: SIV relies on the CTR mode (§3.3.1) for encryption and CMAC mechanism 

(§3.3.3) for authentication. 

 

Sensitive data within SIV implementations 
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As SIV relies on the CMAC and CTR mechanisms using the AES, the reader can refer to 

§3.3.3 §3.3.1 for sensitive data related to MACs and symmetric encryptions respectively 

where the key and both the input and output are sensitive. 

AES-Keywrap 

In addition to the evaluation tasks mentioned in §3.3.6, this section provides additional 

procedures regarding AES-Keywrap. 

 

[AESKeywrap-AgreedMechanism-1] The tester shall verify that plaintexts are 

not larger than 254 − 1 semiblocks for Key Wrap without padding and 232 − 1 bytes 

for Key Wrap with padding . 

I1 

or 

I3 

Analysis: This is to avoid any collision. 

 

Sensitive data within AES-KW implementations 

This paragraph specifies sensitive data for AES-KW in addition to the ones specified for 

Key Protections. 

This scheme relies on AES. Hence, the reader can refer to §3.1.1 for sensitive data related 

to block ciphers where the key and the output are sensitive. 

3.3.7 Key Derivation Functions 

Key Derivation schemes produce a derived key from a secret and other parameters (salt 

value, iteration count).  

 

Key Derivation schemes rely on pseudo-random functions built on hash functions or MAC 

schemes. 

[KeyDerivation-AgreedMechanism-1] The tester shall verify that the used Key 

Derivation scheme is agreed . 
I1 

The following Key Derivation schemes are agreed in : NIST SP800-56 ABC, ANSI-X9.63-

KDF and PBKDF2. 

 

[KeyDerivation-AgreedMechanism-2] If a MAC algorithm is used in key 

derivation scheme, the tester shall verify that an agreed MAC algorithm has been 

selected and that it is used in accordance with [MAC-AgreedMechanism-1]. 

I1 

 

[KeyDerivation-AgreedMechanism-3] If a hash function is used in key 

derivation scheme, the tester shall verify that an agreed hash function has been 

selected and that it is used in accordance with [HashFunctions-

AgreedMechanism-1]. 

I1 

 

[KeyDerivation-ConformanceTesting-1] The tester shall perform KATs or the 

methodology of §5.1.3.6 related to Key Derivation. 
I2 

[KeyDerivation-SourceCodeAnalysis-1] The tester shall verify in the source 

code that the implementation is compliant with the specifications. 

The tester shall still use §5.1.3.6 for implementation representation analysis, as 

§5.1.3.6 may contain some specific cases. 

I3 

 

[KeyDerivation-ImplementationPitfall-1] The tester shall check that invalid 

requests for the keying data generation are not possible. 

I1 

or 

I3 

Analysis : The computation of the derived key starts with some size controls and that 

shall not be ignored. In particular, the tester shall verify that no derived key is larger than 
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ℎ × (232 − 1) where ℎ is the length (in bits) of the output block of the underlying hash 

function or pseudo-random function. 

 

Sensitive data within Key Derivation implementations 

The sensitive data are the input secret and the generated key. 

The amount of information on sensitive data, accessible to an attacker through Side-

Channel or Perturbation attacks, shall be restrained. Also, sensitive data shall not remain, 

even partially, in the volatile or non-volatile memory after usage. 

 

NIST SP800-56 ABC 

There is no additional task specific to NIST SP800-56 ABC. 

 

Sensitive data within NIST SP800-56 ABC implementations 

This paragraph specifies sensitive data for NIST SP800-56 ABC in addition to the ones 

specified for Key Derivation Functions. 

NIST SP800-56 ABC relies on either a hash function or a HMAC. In the latter case, the 

HMAC key is a salt that does not need to be kept secret. 

If the mechanism relies on a hash function, the input and the plaintext are both sensitive. 

Hence, the tester can refer to §3.1.3 for sensitive data related to hash functions. 

If the mechanism relies on a HMAC, the input and the output are both sensitive. Hence, 

the tester can refer to §3.1.3 for sensitive data related to MACs. This is special use case of 

the HMAC where the HMAC key is not sensitive. 

ANSI-X9.63-KDF 

There is no additional task specific to ANSI-X9.63-KDF. 

 

Sensitive data within ANSI-X9.63-KDF implementations 

This paragraph specifies sensitive data for ANSI-X9.63-KDF in addition to the ones 

specified for Key Derivation Functions. 

The mechanism relies on a hash function where the input and the output are both 

sensitive. Hence, the tester can refer to §3.1.3 for sensitive data related to hash 

functions. 

PBKDF2 

In addition to the evaluation tasks mentioned in §3.3.7, this section provides additional 

procedures regarding PBKDF2. 

 

[PBKDF2-AgreedMechanism-1] The tester shall verify that the underlying 

function in the password protection scheme is agreed . 
I1 

Analysis: PBKDF2 applies a pseudo-random function to derive keys from passwords, such 

as HMAC-SHA1 or HMAC-SHA2 .  

 

[PBKDF2KeyDerivation-AgreedMechanism-1] If PBKDF2 uses HMAC as the 

MAC function, the tester shall verify that the HMAC key length of the input key is 

smaller than the digest length of the underlying hash function. 

I1 

Analysis: If the HMAC key is longer than the hash function block size, the key is hashed. 

Hence, this can lower the effective entropy of the key derived. 
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Sensitive data within PBKDF2 implementations 

This paragraph specifies sensitive data for PBKDF2 in addition to the ones specified for 

Key Derivation Functions. 

The mechanism relies on a HMAC where the key, the input and the output are sensitive. 

Hence, the tester can refer to §3.1.3 for sensitive data related to HMACs. 

3.3.8 Password Protection/Password Hashing 
Mechanisms 

Password Protection schemes produce a hashed password from a clear password and 

other parameters (salt value for example), in order to avoid storing authentication 

passwords in clear form. The strength of a password is related to its length and its 

randomness properties (characters from several sets: digits, upper and lower cases, 

special characters, etc).  reminds that passwords shorter than 10 characters or passwords 

composed of personal information (name, phone number, date of birth…) are considered 

as weak passwords. 

Password Protection schemes rely on pseudo-random functions built on hash function or 

MAC scheme.  

[PasswordProtection-AgreedMechanism-1] The tester shall verify that the 

used password protection scheme is agreed . 
I1 

Analysis: PBKDF2 is an agreed Password Protection/Password Hashing scheme . 

 

[PasswordProtection-AgreedMechanism-2] The tester shall verify that the salt 

contains a random value of at least 128 bits. This random value shall be generated 

using an agreed random bit generator. 

I1 

or 

I3 

Analysis: This size of 128 bits is specified in . 

 

Sensitive data within Password Protection implementations 

The sensitive data are the input password. 

Password hashing mechanisms can be used for password verification without storing the 

password. In this case, the derived password is not a sensitive value. In fact, this is the 

purpose of the derivation mechanism: the password cannot be recovered even if the 

derived password are compromised. 

However, such a derivation can be used to derive a key from a password. Of course, in 

this case, the derived password is sensitive. 

PBKDF2 

The tester shall refer to the tasks of §3.3.7: [KeyDerivation-…] and [PBKDF2-…] to 

evaluate the mechanism. 

In addition, this section provides additional procedures regarding PBKDF2 used as 

password protection. 

 

[PBKDF2PasswordProtection-AgreedMechanism-1] The tester shall verify 

that the number of iterations of PBKDF2 scheme is large enough to avoid a brute 

force attack. 

I1 

or 

I3 

Analysis: , published in September 2000, recommends a minimum of 1000 iterations of 

PBKDF2. This limit appears to be insufficient compared to the current processors. NIST 

indicates in  that an iteration count of 10 000 000 may be more appropriate. However, 

such iterations number seems to be too strong for smartcard implementations. The exact 
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number should be commensurate with the acceptable time for key derivation and depends 

also on the use case (i.e. session keys or storage keys). 

 

Sensitive data within PBKDF2 implementations 

This paragraph specifies sensitive data for PBKDF2 in addition to the ones specified for 

Password Protection. 

The sensitive data are the same as PBKDF2 for Key Derivation Functions. 

3.4  Asymmetric Atomic Primitives 

The agreed asymmetric atomic primitives are RSA/Integer factorization, Discrete 

Logarithm in Finite Fields and Discrete Logarithm in Elliptic Curves. The main operations 

for those primitives are a modular exponentiation with RSA parameters, a modular 

exponentiation, and an Elliptic Curve scalar multiplication, respectively. 

RSA/Integer factorisation 

The security of the RSA primitive depends on the quality and secrecy of the prime 

numbers 𝑝 and 𝑞 whose multiplication forms the RSA modulus 𝑛. The public exponent is 

denoted 𝑒 and the private exponent 𝑑. 

[RSA-AgreedMechanism-1] The tester shall verify that all RSA public exponent 

in the system are greater than 216 . 

I1 

I2 

 

[RSA-AgreedMechanism-2] The tester shall verify that bit length of all RSA 

modulus used in the system are at least 1900 bits.  

I1 

I2  

Analysis: This is a legacy limit and holds until 2024. The recommended limit number is 

3000 bits. 

The main computation involved in RSA-based mechanisms is modular exponentiation with 

RSA parameters. Specifically, the following cases may arise: 

- A modular exponentiation with an RSA private key. This primitive is used for 

private operations in RSA based mechanisms. In this case, the following 

computations can be further distinguished depending on the parameters: 

o modular exponentiation with extended parameters:(𝑝, 𝑞, 𝑑𝑃, 𝑑𝑄, 𝑞𝐼𝑛𝑣) ; in this 

case, two exponentiations are performed and a Chinese Remainder Theorem 

(CRT) recombination is performed at the end; this exponentiation is called 

RSA in CRT mode; 

o modular exponentiation with simple parameters: (𝑛, 𝑑); in this case, a single 

exponentiation is performed. 

- A modular exponentiation with an RSA public key: (𝑛, 𝑒). This primitive is used for 

public operations in RSA-based mechanisms. In this case a single exponentiation is 

performed; in addition, the value 𝑒 is generally equal to 65537 and an optimised 

exponentiation might be implemented. 

 

[RSA-AgreedMechanism-3] If there are RSA keys generated in the system, the 

tester shall verify that the key generation process is based on a standard or 

referenced process. 

I1 

I2  

Analysis: This task aims to check that no flaw in the RSA implementation allows an 

attacker to recover private keys. The ROCA vulnerability is an example of flaw in RSA 

implementation allowing attackers to recover private keys from vulnerable devices.  

 

[RSA-ConformanceTesting-2] The tester shall test all key lengths of the 

primitive being used in the system. 

I1 

I2 

Analysis: The boundaries of the key size shall be verified in the function specification. 

Testing every single bit-size within the boundary is not mandatory. Only key-lengths 
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multiple of 32 bits shall be considered. Indeed, RSA keys length are always multiple of 32 

bits. However, regarding I1 and I2, it may be possible to have RSA bit-size modulus not 

multiple of 32 bits, every possible bit-size shall be tested. 

 

[RSA-ConformanceTesting-2] The conformance tests shall be applied to all 

modular exponentiation implementations used in the system. 

I1 

I2 

Analysis: Several implementations of modular exponentiations might occur in a system. 

For instance, different side-channel protections may be implemented depending if the 

exponentiation is used for decryption or signature. 

Recommendation: Even if a modular exponentiation implementation is not used in the 

system under evaluation, it should be tested as long as it is in the system. Indeed, it is 

unsafe to keep an untested unused function in a product. If the function is activated later 

during a system evolution, the function would not have been tested. 

 

[RSA-ConformanceTesting-3] The tester shall perform the MCT defined below. I2 

Analysis: For the three above exponentiations, if the implementations differ, the tester 

shall test all implemented exponentiations. 

 

The generic MCT with key defined in §2.2.1 shall be considered with: 

- 𝑓 is a modular exponentiation: 𝑎𝑏𝑚𝑜𝑑𝑛; 𝑎 is considered as the input and 𝑏, 𝑛 are 

considered as the key; 

- nb_for_input=1 (first_outputs is void) and encode_input is the identity; 

- nb_for_key=2 and encode_key takes the penultimate output and the last output 

where the most and least significant bit is set to one, to produce the pair (𝑏, 𝑛); 
- N_key and N_input are chosen such that the test runs for 48 hours. 

 

In many systems, 𝑒 is fixed and is equal to 65537. A special implementation of modular 

exponentiation may occur in such systems. Therefore, a special MCT is defined. The 

generic MCT with key defined in §2.2.1 shall be considered with the following 

characteristics: 

- 𝑓 is a modular exponentiation: 𝑎65537𝑚𝑜𝑑𝑛; 

- the input of the function 𝑓 is a number 𝑎 ∈ [0, 𝑛 − 1]; 
- 𝑛 is considered as the key; 

- nb_for_input=1 (first_outputs is void) and encode_input is simply equal to the 

output given as parameters; 

- nb_for_key=1 and encode_key takes the output and sets the most and least 

significant bits to 1; 

- N_key and N_input are chosen such that the test runs for 48 hours. 

 

[RSA-ConformanceTesting-4] The tester shall perform KATs or the methodology 

of §5.1.4 related to the modular exponentiation and RSA recombination. 
I2 

[RSA-SourceCodeAnalysis-1] The tester shall verify in the source code that the 

implementation is compliant with the specifications. 

The tester shall still use §5.1.4 for implementation representation analysis, as 

§5.1.4 may contain some specific cases. 

I3 

 

 

[RSA-SourceCodeAnalysis-3] The tester shall verify that 𝑝 and 𝑞, outputs of the 

RSA key pair generator, have the same bit length, and that their product  

has the required modulus bit length ( ) Moreover, the following condition shall 

be satisfied: 

|𝑝 − 𝑞| ≥ 2
𝑙𝑜𝑔2(𝑛)

2
−100 

I1 

or 

I3 
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Analysis: For this task, the tester shall check if the condition is implemented in source 

code or check the randomness of 𝑝 and 𝑞. In the latter case, the probability that the 

condition is not satisfied is negligible . 

 

[RSA-SourceCodeAnalysis-4] The tester shall verify that 𝑑 is larger than 

2𝑙𝑜𝑔2(𝑛) 2⁄ . 

I1 

or 

I3 

Analysis: For this task, the tester shall check if the condition is implemented in source 

code or check that 𝑑 has been chosen after that a small public exponent 𝑒 has been 

generated. 

 

Sensitive data within RSA primitive implementations 

This paragraph specifies sensitive data for RSA primitive implementations.  

As far as this document is concerned, in mechanisms that uses the RSA primitive to 

perform exponentiations 𝑎𝑏𝑚𝑜𝑑𝑛, 𝑎, 𝑏 and/or the result of the exponentiation can be 

sensitive. This will be specified in the sections related to mechanisms. In CRT mode, the 

modulus is sensitive as well. 

In addition, during an exponentiation computation, the following data may also be 

considered sensitive (depending on whether 𝑎, 𝑏, and/or the result are sensitive): 

- Almost every temporary variables within the exponentiation. These data can be 

used to derive the base or the result of the exponentiation. In CRT mode, the 

modulus can be derived as well. 

- When using the CRT mode, erroneous outputs are sensitive data because of the so 

called Bellcore attack, where only one erroneous output permits to derive the 

private key. 

- To a lesser extent, other erroneous outputs may be sensitive as well (e.g. because 

of Safe-Error attacks). 

The amount of information on sensitive data, accessible to an attacker through Side-

Channel or Perturbation attacks, shall be restrained. Also, sensitive data shall not remain, 

even partially, in the volatile or non-volatile memory after usage. 

 

Discrete Logarithm in Finite Fields 

Discrete Logarithm is a primitive used as an alternative to RSA for signature, key 

exchange and encryption schemes. The security of Discrete Logarithm in Finite Fields is 

based on the difficulty to find 𝑥 given 𝑔 and 𝑦 = 𝑔𝑥 where 𝑔 denotes the generator of a 

subgroup of order 𝑞 of the multiplicative group 𝐺𝐹(𝑝)× with 𝑝 being a prime number. Let be 

𝑟 the largest prime factor of 𝑞. 

[FFDLOG-AgreedMechanism-1] The tester shall verify that the size of the prime 

number 𝑝 defining the finite field is greater than 1900 bits . 
I1 

Analysis: This is a legacy limit and holds until 2024. The recommended limit number is 

3000 bits. 

 

[FFDLOG-AgreedMechanism-2] If the used exponential modular group is widely 

spread, the tester shall verify that implemented DH parameters are conformance 

with the standard. 

I1 

Analysis: Discrete logarithm algorithms involve a group related precomputation phase, 

which is the bottleneck in terms of complexity of the attack. As a consequence, for DL 

modules shared by a lot of users and applications, it is strongly recommended not to use 

modules of length close to the lower limit of the legacy range . Examples of widely spread 

modular exponential groups are the ones defined in , used in both SSH and IKE protocols. 



 

43 

 

[FFDLOG-AgreedMechanism-3] The tester shall verify that 𝑟 is greater than 200 

bits . 
I1 

Analysis: In addition, it is recommended that the size of 𝑟 be greater than 250 bits. 

 

The main computations of mechanisms based on Dicrete Logarithm in Finite Field are: 

- A modular exponentiation given Diffie-Hellman group parameters and an exponent; 

that is the computation of 𝑦 = 𝑔𝑥𝑚𝑜𝑑𝑝 given 𝑔, 𝑝 (in the group parameters) and the 

exponent 𝑥; 
- The computation of 𝑔𝑢𝑦𝑣𝑚𝑜𝑑𝑝 given 𝑔, 𝑝 (defined by the group parameters), 𝑦 

(generally a public key) and the two exponents 𝑢, 𝑣. It is called multi modular 

exponentiation. This operation is generally used for signature verifications only. 

 

[FFDLOG-ConformanceTesting-1] The conformance tests shall be applied to all 

modular exponential groups used in the system. 

I1 

I2  

Analysis: It shall be verified in the system specifications which modular exponential 

groups can be used in the system. All used groups shall be tested. If any kind of modular 

exponential groups can be used within the range [𝑚𝑖𝑛,𝑚𝑎𝑥], then a subset of standardised 

groups within the range size shall be tested.  provides standardized modular exponential 

groups. 

 

[FFDLOG-ConformanceTesting-2] The conformance tests shall be applied to all 

modular exponentiation implementations used in the system. 

I1 

I2 

Analysis: Several implementations of modular exponentiations might occur in a system. 

For instance, different side-channel protections may be implemented depending if the 

exponentiation is used for decryption or signature. 

Recommendation: Even if a modular exponentiation implementation is not used in the 

system under evaluation, it should be tested as long as it is in the system. Indeed, it is 

unsafe to keep an untested unused function in a product. If the function is activated later 

during a system evolution, the function would not have been tested. 

 

[FFDLOG -ConformanceTesting-3] The conformance tests shall include the MCT 

defined below. 
I2 

The generic MCT with key defined in §2.2.1 shall be considered with the following 

characteristics: 

- 𝑓 is a modular exponentiation: 𝑎𝑏𝑚𝑜𝑑𝑝; 𝑎 is considered as the input and 𝑏 is 

considered as the key; 𝑝 is a constant modulus defined by the used modular 

exponential group specification; 

- nb_for_input=1 (first_outputs is void) and encode_input is the identity function; 

- nb_for_key=1 and encode_key takes the last output where the least significant bit 

is set to one. 

 

[FFDLOG-ConformanceTesting-4] The tester shall perform KATs or the 

methodology of §5.1.4 related to modular exponentiation. 
I2 

[FFDLOG-SourceCodeAnalysis-1] The tester shall verify in the source code that 

the implementation is compliant with the specifications. 

The tester shall still use §5.1.4 for implementation representation analysis, as 

§5.1.4 may contain some specific cases. 

I3 

 

[FFDLOG-ImplementationPitfall-1] The tester shall check that the system only 

manipulate correct values 𝑦. These values must have order divisible by 𝑟 and 

dividing 𝑞. 

I1 

or 

I3  
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Particularly, points received from another entity shall be verified by the system. 

Analysis: This requirement ensures that the manipulated values do not lie in subgroups 

of small size (i.e. ≤ 250 bits) or outside the intended group. 

If 𝑞 is prime, 𝑟 = 𝑞 and the system shall verify that manipulated values have exact order 𝑞. 
It is advised to pick a subgroup of prime number. 

 

Sensitive data within Discrete Logarithm in Finite Fields primitive 

implementations 

This paragraph specifies sensitive data for Discrete Logarithm in Finite Fields primitive 

implementations. 

Depending on the mechanisms that uses this primitive to perform modular or multi 

modular exponentiations, the base(s), exponent(s) and/or the result can be considered 

sensitive. This will be specified in the sections related to mechanisms. 

In addition, during an exponentiation computation, the following data may also be 

considered sensitive (depending on which operands are considered sensitive): 

- Almost every temporary variables within the exponentiation. These data can be 

used to derive the base or the result of the exponentiation as well. 

- As specified in [FFDLOG-ImplementationPitfall-1], if modular exponentiations 

are performed on unintended subgroups, the outputs are sensitive. 

- If an error occurs during modular exponentiations, the computation can boil down 

to the computation on an unintended subgroup. The erroneous computed results 

are then sensitive. 

- To a lesser extent, other erroneous outputs may be sensitive as well (e.g. because 

of Safe-Error attacks). 

The amount of information on sensitive data, accessible to an attacker through Side-

Channel or Perturbation attacks, shall be restrained. Also, sensitive data shall not remain, 

even partially, in the volatile or non-volatile memory after usage. 

Discrete Logarithm in Elliptic Curves 

The elliptic curve used in ECC protocols must be robust to offer security for the 

asymmetric cryptographic scheme. These parameters may be common to a group of users 

and may be public. The security of Discrete Logarithm in Elliptic Curves is based on the 

difficulty to find 𝑑 given 𝐺 and 𝑃 = [𝑑]𝐺 where 𝐺 denotes the generator of a subgroup of 

order 𝑞 of the elliptic curve. Let be 𝑟 the largest prime factor of 𝑞. 

 

[ECDLOG-AgreedMechanism-1] The tester shall verify that the elliptic curve 

used by the asymmetric scheme is agreed . 
I1 

The following elliptic curves are agreed : P256r1, P384r1, P512r1 from the Brainpool 

standard, P-256, P-384, P-512 from NIST, and FRP256v1. 

The main computations of ECC mechanisms are: 

- The computation of 𝑄 = [𝑑]𝑆, given the scalar 𝑑 and a point 𝑆 lying on a curve. It is 

called elliptic curve scalar multiplication (EC scalar multiplication) and can be used 

for both private and public ECC operations. 

- The computation of 𝑅 = [𝑢]𝑆 + [𝑣]𝑇 given the scalars 𝑢, 𝑣 and the points 𝑆, 𝑇 lying on 

a curve. It is called multi EC scalar multiplication. This operation is generally used 

for signature verifications only. 

 

[ECDLOG-ConformanceTesting-1] The conformance tests shall be applied to all 

elliptic curves used in the system. 

I1 

I2  

Analysis: It shall be verified in the function specification which elliptic curves can be used 

in the system. All used elliptic curves shall be tested. If any elliptic curve can be used 
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within the range [𝑚𝑖𝑛,𝑚𝑎𝑥], then a subset of standardised elliptic curves within the range 

size shall be tested. NIST and Brainpool curves are examples of standardized curves. 

 

[ECDLOG-ConformanceTesting-2] The conformance tests shall be applied to all 

EC scalar multiplication and multi scalar multiplication implementations used in the 

system. 

I1 

I2 

Analysis: Several implementations of elliptic curve scalar multiplication might occur in a 

system. For instance, different side-channel protections may be implemented depending if 

the exponentiation is used for decryption or signature. Also, the modular arithmetic 

operations are generally optimized for specific curves and therefore the implementation 

differ. 

Recommendation: Even if an EC scalar multiplication or multi scalar multiplication 

implementation is not used in the system under evaluation, it should be tested as long as 

it is in the system. Indeed, it is unsafe to keep an untested unused function in a product. 

If the function is activated later during a system evolution, the function would not have 

been tested. 

 

[ECDLOG-ConformanceTesting-3] The tester shall perform the MCT defined 

below. 
I2 

 

The generic MCT with key defined in §2.2.1 shall be considered. 

To test EC scalar multiplication, 𝑓 is an EC scalar multiplication with : 

- 𝑓 is the computation of [𝑑]𝑃; 𝑑 is considered as the key and 𝑃 is considered as the 

input; 

- nb_for_input=1 (first_outputs is void) and encode_input is the identity function; 

- nb_for_key=1 and encode_key is the following algorithm : 

Require : a point on the elliptic curve 

Convert the 𝑥 coordinate of output as an integer and set it to 𝑡𝑚𝑝0 

Convert the 𝑦 coordinate of output as an integer and set it to 𝑡𝑚𝑝1 

return 𝑡𝑚𝑝0 + 𝑡𝑚𝑝1𝑚𝑜𝑑𝑞 

 

In some mechanisms, such as the signature generation in ECDSA, the base point is the 

generator 𝐺 and never varies. In some optimised implementations, the EC scalar 

multiplication takes this generator 𝐺 as the only input of the scalar multiplication. In the 

latter case, a specific MCT shall be performed where first_input=𝐺 and N_input=1. 

 

To test multi EC scalar multiplication, 𝑓 is an EC scalar multiplication with: 

- 𝑓 is the computation of [𝑢]𝑆 + [𝑣]𝑇; the pair (𝑢, 𝑣) is considered as the key and the 

pair (𝑆, 𝑇) is considered as the input; 

- nb_for_input=2 (first_outputs contains one point) and encode_input is the 

construction of the pair (𝑆, 𝑇) given two outputs of 𝑓; 
- nb_for_key=1 and encode_key is the following algorithm : 

Require :  a point on the elliptic curve 

Convert the 𝑥 coordinate of output as an integer and set it to 𝑡𝑚𝑝0 

Convert the 𝑦 coordinate of output as an integer and set it to 𝑡𝑚𝑝1 

- return (𝑡𝑚𝑝0𝑚𝑜𝑑𝑞, 𝑡𝑚𝑝1𝑚𝑜𝑑𝑞) 

 

[ECDLOG-ConformanceTesting-4] The tester shall perform KATs or the 

methodology of §5.1.4 related to EC scalar multiplications. 
I2 
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[ECDLOG-SourceCodeAnalysis-1] The tester shall verify in the source code that 

the implementation is compliant with the specifications. 

The tester shall still use §5.1.4 for implementation representation analysis, as 

§5.1.4 may contain some specific cases. 

I3 

 

[ECDLOG-ImplementationPitfall-1] The tester shall check that the system only 

manipulates points lying on the intended curve. In addition, if a curve with a non-

prime order is used the points shall be in the intended subgroup. 

 

Particularly, points received from another entity shall be verified. 

I1 

or 

I3 

Analysis: This task is required when points are received from another entity. In this case, 

the system shall verify that, before being used, the manipulated points lie on the curve 

and are in the intended subgroup. Otherwise, the Invalid Curve Attack  can be possible. 

If 𝑞 is prime, 𝑟 = 𝑞 and the tester shall verify that manipulated points have exact order 𝑞. 
It is advised to pick a subgroup of prime number. 

 

Sensitive data within Elliptic Curve primitive implementations 

This paragraph specifies sensitive data for Discrete Logarithm in Elliptic Curves primitive 

implementations, in the case when a secret scalar is used. 

Depending on the mechanisms using this primitive to perform simple or multi EC scalar 

multiplication, the base point(s), scalar(s) and/or the resulting point can be considered 

sensitive. This will be specified in the sections related to mechanisms. 

In addition, during an EC scalar multiplication computation, the following data may also be 

considered sensitive (depending on which operands are considered sensitive): 

- Almost every temporary variables within the multiplication. These data can be used 

to derive the base point, the result and the scalar. 

- As specified in [ECDLOG-ImplementationPitfall-1], if EC scalar multiplications 

are performed on unintended curves, the outputs are sensitive. This also applies if 

the elliptic curve parameters are corrupted . 

- If an error occurs during EC scalar multiplications, the computation can boil down 

to the computation on an unintended curve. The erroneous computed results are 

then sensitive. 

- To a lesser extent, other erroneous outputs may be sensitive as well (e.g. because 

of Safe-Error attacks). 

The amount of information on sensitive data, accessible to an attacker through Side-

Channel or Perturbation attacks, shall be restrained. Also, sensitive data shall not remain, 

even partially, in the volatile or non-volatile memory after usage. 

3.5  Asymmetric Constructions 

Asymmetric constructions rely on several primitives. For example, EC-DSA relies on: 

- an EC scalar multiplication primitive; 

- a hash function primitive; 

- a DRG mechanism, see section 3.6.2. 

 

[AsymmetricConstruction-ImplementationPitfall-1] All implementation 

pitfalls of the underlying mechanisms shall be considered. 

I1 

or 

I3 

Analysis: Pitfalls related to the asymmetric primitives (§3.4), the hash functions 

(§3.1.3), the DRG (§3.6) and/or block ciphers (§3.1.1) shall be used. 
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3.5.1 Asymmetric Encryption 

[AsymmetricEncryption-AgreedMechanism-1] The tester shall verify that the 

used Asymmetric Encryption scheme is agreed . 
I1 

The following Asymmetric Encryption schemes are agreed : RSA OAEP and RSA PKCS#1 

v1.5 (encryption mode). 

 

[AsymmetricEncryption-AgreedMechanism-2] The tester shall verify that the 

underlying primitives in the Asymmetric Encryption scheme are agreed . 
I1 

 

[AsymmetricEncryption-ConformanceTesting-1] The tester shall test the 

conformance of the underlying primitives. 

I1 

I2 

 

[AsymmetricEncryption-ConformanceTesting-2] The tester shall perform 

KATs or the methodology of §5.1.5.1 related to Asymmetric Encryptions. 

The tester shall test correct and incorrect ciphertexts. 

I2 

[AsymmetricEncryption-SourceCodeAnalysis-1] The tester shall verify in the 

source code that the implementation is compliant with the specifications. 

The tester shall still use §5.1.5.1 for implementation representation analysis, as 

§5.1.5.1 may contain some specific cases. 

I3 

This conformance test or source code analysis is particularly important for RSA schemes. 

The padding decoding procedure, as provided in the mechanism specifications, shall be 

correctly implemented. 

 

[AsymmetricEncryptionRSA-ImplementationPitfall-1] For RSA encryption 

schemes, the tester shall verify that the attacker cannot access to the specific 

error condition that can occur during the decoding of an encoded message. 

I1 

or 

I3 

Analysis: If the attacker can distinguish errors, attacks such as  for OAEP can be 

performed. 

 

[AsymmetricEncryptionRSA-SourceCodeAnalysis-2] The tester shall verify in 

the source code that the random bytes used in the padding scheme are generated 

using an agreed DRG. 

I3 

 

Sensitive data within Asymmetric Encryption implementations 

In an Asymmetric Encryption mechanism, the public operation is the encryption. The only 

sensitive data here is the plaintext itself, whether it is in its raw or encoded form. 

The private operation is the decryption. The sensitive data in this operation are the raw or 

encoded plaintext, and the private key. The tester can refer to §3.4, dealing with sensitive 

data in RSA modular exponentiations that take place with those sensitive data. 

Also, as described in task [AsymmetricEncryptionRSA-ImplementationPitfall-1], 

information regarding the success or failure of the decoding operation of deciphered 

ciphertexts can be used to recover the plaintext of a ciphertext. Such information shall not 

be accessible by an attacker either by direct error code, as stated in the task, or by Side-

Channel attacks, particularly timing attacks. 

 

RSA OAEP 

For [AsymmetricEncryption-ConformanceTesting-2], the KATs in Appendix contain 

all possible errors conditions in the decoding operations. These KATs can help for 

[AsymmetricEncryptionRSA-ImplementationPitfall-1]. In fact, those tasks 

correspond to the note of the provided in the mechanism specifications (Section 7.1.2 of ). 
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Sensitive data within RSA OAEP implementations 

This paragraph specifies sensitive data for RSA OAEP in addition to the ones specified for 

Asymmetric Encryption. 

RSA OAEP makes use of a hash function. Hence, the tester may refer to §3.1.3 for 

sensitive data related to this kind of primitive where the input and the output are 

sensitive. 

All the intermediate values in the OAEP encoding and decoding operation are sensitive, 

since they may allow the recovery of the original message. 

RSA PKCS#1v1.5 - Encryption 

In addition to the evaluation tasks mentioned in §3.5.1, this section provides additional 

procedures regarding RSA PKCS#1v1.5. 

The KATs of Appendix contain all possible errors in the decoding operations and can help 

for [AsymmetricEncryptionRSA-ImplementationPitfall-1]. 

 

The PS value when encoding the message consists of nonzero random bytes. For the task 

[AsymmetricEncryptionRSA-SourceCodeAnalysis-1], the tester shall in particular 

verify in the implementation representation that PS is correctly generated. 

 

[AsymmetricEncryptionRSA-ImplementationPitfall-1] are not enough if a padding 

oracle is available. Indeed, attacks exist such as Bleichenbacher’s attack  or . In addition, 

the following rule shall be considered. 

[RSAPKCS#1v1.5Encryption-ImplementationPittfall-1] The tester shall verify 

that a padding oracle is not available to an attacker, or that all attacks similar to 

the Bleichenbacher's attack are taken care of with efficient countermeasures. 

I1 

or 

I3 

Analysis: Bleichenbacher’s attack is an example of an attack targeting this encryption 

scheme using an oracle. In the case where countermeasures are applied, the tester shall 

equivalently verify that the system handles in the same way: 

- an incorrectly encoded ciphertext, and, 

- a correctly encoded ciphertext that has been obtained from a relation with another 

valid ciphertext rather than the encryption operation. 

For example, the authors of  suggest computing the encoding message (EM) in PKCS#1 

v1.5  as: 

EM = 0002 || r || 00 || msg || SHA(msg) 

instead of 

EM = 0002 || r || 00 || msg 

with r being an octet string of random non-zero values as in PKCS#1 v1.5. The system 

shall handle “incorrectly encoded ciphertexts” and “correctly encoded ciphertexts where 

the digest does not match with the one in EM”, in the same way. The term “in the same 

way” means that the system shall behave in the same manner in the error returned and 

the time duration of checking the format of EM. 

Another example, adopted in TLS since version 1.0, is the following. The countermeasure 

is applied by the server when decrypting a message during the handshake. If the padding 

during decryption is not PKCS#1 v1.5 valid, the server still continues the protocol but 

using a random value instead of the (invalid) plaintext. This value is used as a pre-master 

secret to derive session keys, by both the server and the client. This prevents 

Bleichenbacher’s attack since the attacker knows neither the plaintext value (this is in fact 

the value he tries to gain access to, or at least gain some information on), nor the random 

value generated by the server. The attacker cannot make the difference between a valid 

and invalid PKCS#1 v1.5 padding check since he cannot derive the pre-master secret and 

respond to the server in any case. 
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Sensitive data within RSA PKCS#1v1.5 implementations 

This paragraph specifies sensitive data for RSA PKCS#1v1.5 in addition to the ones 

specified for Asymmetric Encryption. 

 

As described in task [RSAPKCS#1v1.5Encryption-ImplementationPitfall-1], 

information regarding the success or failure of the decoding operation of deciphered 

ciphertexts can be used to recover the plaintext of a ciphertext. Such information shall not 

be accessible by an attacker either by direct error code, as stated in the task, or by Side-

Channel attacks, particularly timing attacks. 

3.5.2 Digital Signature 

[DigitalSignature-AgreedMechanism-1] The tester shall verify that the Digital 

Signature scheme is agreed . 
I1 

The following Digital Signature schemes are agreed in : RSA PSS, DSA based schemes 

(KCDSA, Shnorr, DSA, EC-KCDSA, EC-Shnorr, EC-DSA, EC-GDSA) and RSA PKCS#1v1.5 

(signature mode). 

 

[DigitalSignature-AgreedMechanism-2] The tester shall verify that the 

underlying primitives in the Digital Signature scheme are agreed . 
I1 

 

[DigitalSignature-ConformanceTesting-1] The tester shall test the 

conformance of the underlying primitives in the Digital Signature scheme. 

I1 

I2 

 

[DigitalSignature-ConformanceTesting-2] The tester shall perform KATs or the 

methodology of §5.1.5.2 related to Asymmetric Encryptions. 

The tester shall test correct and incorrect signatures. 

I2 

[DigitalSignature-SourceCodeAnalysis-1] The tester shall verify in the source 

code that the implementation is compliant with the specifications. 

The tester shall still use §5.1.5.2 for implementation representation analysis, as 

§5.1.5.2 may contain some specific cases. 

I3 

 

Sensitive data within Digital Signature implementations 

In a Digital Signature mechanism, the private operation is the signature generation. 

Obviously, the private key is sensitive. The message and the signature are generally 

considered as public data and therefore not sensitive. However, it may happen that the 

message to be signed needs to be kept secret. In this case, the raw message is sensitive 

as well as its digest and its fully encoded forms (especially if messages are non-random, 

such as small human readable texts, or very small random messages). In this case, even 

the signature is sensitive as the digest can be derived from it. 

The public operation is the signature verification. In this operation, nothing is generally 

considered sensitive. As for the signature generation, the message, its digest, its encoded 

form and even the signature may be sensitive. 

 

The practical impact of these sensitive data will be made explicit in the next sections, 

since it depends on the specific Asymmetric Atomic Primitive underlying each Digital 

Signature mechanism. 

3.5.2.1 RSA based schemes 

 

Sensitive data within RSA based Digital Signature implementations 
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Since the same remarks can be done for RSA PSS and RSA PKCS#1v1.5, this paragraph 

specifies the sensitive data for both mechanisms, in addition to ones specified for Digital 

Signature, and in relation with the RSA Asymmetric Atomic Primitive (§3.4).  

The private key is always sensitive, and it appears as exponent in RSA modular 

exponentiations during the signature generation. Then, the message and/or the signature 

may be considered sensitive. During signature generation (resp. during signature 

verification), the former appears, in its encoded form, as base of exponentiations (resp. as 

result), while the latter appears as result (resp. as base). Section §3.4 can be used to 

determine the intermediary values during exponentiations that are consequently 

considered sensitive. Also, as specified in §3.4, a faulty signature computed in the CRT 

mode must be considered sensitive. 

Finally, RSA PSS and RSA PKCS#1v1.5 both make use of a hash function. Hence, the 

tester may refer to §3.1.3 for sensitive data related to this kind of primitive. 

 

RSA PSS 

In addition to the evaluation tasks mentioned in §3.5.1, this section provides additional 

procedures regarding RSA PSS. 

For the task [DigitalSignature-ConformanceTesting-2], the appendix of this 

document lists KATs that shall be used for this mechanism. 

RSA PKCS#1v1.5 - Signature 

In addition to the evaluation tasks mentioned in §3.5.1, this section provides additional 

procedures regarding RSA PKCS#1v1.5. 

During signature verification, the conformance of the format check is very important. 

Bleinchenbacher and May reported the first attack on this signature scheme where the 

format check was not correctly implemented . KATs in Appendix contain all possible errors 

in the format encoding. Those KATs can be used for the task [DigitalSignature-

ConformanceTesting-2] and therefore attest that attacks such as Bleinchenbacher’s and 

its variants are not possible. 

3.5.2.2 DSA based schemes 

In addition to the evaluation tasks mentioned in §3.5.2, this section provides additional 

procedures regarding DSA and its derived schemes: KCDSA, Schnorr, and their elliptic 

variants: EC-KCDSA, EC-DSA, EC-GDSA and EC-Schnorr. 

The DSA scheme is probabilistic. An exponent is randomly generated. For this 

conformance testing, the generation of the exponent is tweaked in such a way that the 

exponent is the one given in the KAT. 

The leakage of the secret scalar 𝑘 or even a few bits, generated during signature 

generation, poses risks to the confidentiality of the associated long-term private key. 

Strong care must be taken so that no bias can be exploited, and any bit value of 𝑘 shall 

not leak during the use of 𝑘. 

[DSA-AgreedMechanism-1] The tester shall verify that the secret value 𝑘 is 

generated using an agreed random bit generator . 

I1 

or 

I3 

 

[DSA-SourceCodeAnalysis-1] The tester shall verify that the secret value 𝑘 is 

either generated uniformly in the range [1, 𝑞 − 1] using the “Testing” technique of , 

Appendix B.1.2, or generated using the “extra random” technique of , Appendix 

B.1.1. 

I3 

Analysis: The naive method to generate 𝑘 is to generate a random number in [1, 2𝑙], with 

𝑙 = ⌈𝑙𝑜𝑔2(𝑞)⌉, then applying a reduction mod 𝑞. This method introduces biases and attacks 
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can be led. This specific task can only be done with an implementation representation 

analysis. 

 

Sensitive data within DSA-based Digital Signature implementations 

This paragraph specifies the sensitive data for DSA based Digital Signatures, in addition to 

the ones specified for Digital Signatures mechanisms. It is valid for all DSA based 

schemes, and none of them exhibit any additional sensitive data other than those 

presented here. 

DSA based signatures are powered either by the Finite Fields or Elliptic Curve Discrete 

Logarithm primitive, both described in §3.4. One of the role of the present paragraph is to 

clarify which sensitive data may be appear as base (or base point), exponent (or scalar), 

or result of a modular exponentiation in DSA schemes; and section §3.4 can then be used 

to determine the intermediary values during exponentiations (or EC multiplication) that 

are consequently considered sensitive. 

During the signature generation, there are two elements that are always sensitive: the 

private key, and the random per-message value 𝑘. In all DSA based signatures, the latter 

is involved as exponent in a modular exponentiation (or as scalar in EC scalar 

multiplication). Any information of such ephemeral value 𝑘, even a single bit of it for 

several signatures, is enough to derive the private static key [AFG+. 

Also, both the privatekey and the value 𝑘 are involved in the computation of the second 

component of DSA signature (denoted 𝑠). Thus, all intermediary results for the 

computation of 𝑠 are sensitive. 

On the other hand, during signature verification, neither the private key nor the value 𝑘 
are (directly) manipulated, and there is no sensitive data manipulation in this operation in 

the general case. 

When the message and/or the signature are themselves be considered as sensitive, then 

all intermediary results of both the signature generation and verification are sensitive.  

Finally, all DSA based schemes make use of a hash function. Hence, the tester may refer 

to §3.1.3 for sensitive data related to this kind of primitive. 

KCDSA 

The tester shall refer to the evaluation tasks mentioned in §3.5.2.2. 

Schnorr 

The tester shall refer to the evaluation tasks mentioned in §3.5.2.2. 

DSA 

The tester shall refer to the evaluation tasks mentioned in §3.5.2.2. 

EC-KCDSA 

The tester shall refer to the evaluation tasks mentioned in §3.5.2.2. 

EC-DSA 

The tester shall refer to the evaluation tasks mentioned in §3.5.2.2. 

EC-GDSA 

The tester shall refer to the evaluation tasks mentioned in §3.5.2.2. 

EC-Schnorr 

The tester shall refer to the evaluation tasks mentioned in §3.5.2.2. 
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3.5.3 Asymmetric Authentication 

[AsymmetricAuthentication-AgreedMechanism-1] The tester shall verify that 

the used Asymmetric Authentication scheme is agreed . 
I1 

 

No dedicated asymmetric authentication scheme is currently agreed in . In practice, 

agreed mechanisms therefore consist in using a signature scheme in a random challenge 

response protocol. 

The tester shall refer to evaluation tasks of the corresponding signature scheme and 

random generator. 

[AsymmetricAuthentication-ImplementationPitfall-1] The tester shall verify 

that the private key is not used for different purposes (signature and 

authentication) . 

I1 

 

3.5.4 Key Establishment 

[KeyEstablishment-AgreedMechanism-1] The tester shall verify that the Key 

Establishment scheme is agreed . 
I1 

The following Key Establishment schemes are agreed : DH, DLIES-KEM and elliptic 

variants: EC-DH and ECIES-KEM. 

 

[KeyEstablishment-AgreedMechanism-2] The tester shall verify that the 

underlying primitives in the Key Establishment scheme is agreed . 
I1 

 

[KeyEstablishment-AgreedMechanism-3] The tester shall verify that all 

information is authenticated (other party, data exchanged during the key 

establishment). 

I1 

Analysis: As an example, Diffie-Hellman is an unauthenticated key establishment that 

may fall to man-in-the-middle attacks. In order to ensure security, it is necessary to 

authenticate DH parameters. This can be achieve in various ways. For instance, the DH 

exchange can be encrypted with a Pre-Shared Key, or signed with private keys. 

 

[KeyEstablishment-AgreedMechanism-4] The tester shall verify that a key 

established through key establishment isl not used directly. 
I1 

Analysis: The key established shall be derived into other keys using an agreed key 

derivation function. 

 

[KeyEstablishment-ConformanceTesting-1] The tester shall test the 

conformance of the underlying primitives and mechanisms. 

I1 

I2 

 

[KeyEstablishment-ConformanceTesting-2] The tester shall perform KATs or 

the methodology of §5.1.5.3 related to Key Establishment.  
I2 

[KeyEstablishment-SourceCodeAnalysis-1] The tester shall verify in the 

source code that the implementation is compliant with the specifications. 

The tester shall still use §5.1.5.3 for implementation representation analysis, as 

§5.1.5.3 may contain some specific cases. 

I3 

 

[KeyEstablishment-ImplementationPitfall-1] When a secret is generated from 

a preexisting secret, the tester shall verify that the preexisting secret has at least 

100 bits of entropy.  

I1 

Analysis: Ephemeral keys generated using the Diffie-Hellman scheme and master secret 

used in TLS record protocol are examples of such preexisting secrets. In accordance with , 

entropy of such preexisting secret s, e.g. of each ephemeral Diffie-Hellman private key in 
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the former example, must be at least 100 bits for legacy mechanisms and 125 bits for 

recommended mechanisms. 

 

Sensitive data within Key Establishment implementations 

Agreed Key Establishment mechanisms rely on either the Finite Fields or the Elliptic Curve 

Discrete Logarithm primitive. The sensitive data in those primitive is described in §3.4. 

In DH and EC-DH, the parties’ random secret values are sensitive. They are used as 

exponent (resp. scalar) in a modular exponentiation (resp. EC scalar multiplication) to 

produce the shared secret. Of course, the result of this operation is itself sensitive, as well 

as the data derived from this base secret. 

 

In DLIES-KEM and ECIES-KEM, the parties’ secret keys are sensitive. They are used as 

exponent (resp. scalar) in the key generation operation to obtain the corresponding public 

key. The receiving party’s secret key is also used in the decapsulation operation, as 

exponent (resp. scalar) to the value sent by the other party, to obtain the shared secret. 

In the encapsulation operation, the sensitive data is the random secret value. It is also 

used as exponent (resp. scalar), applied to the other party’s public key in order to obtain 

the shared secret. Here also, this shared secret is sensitive, as well as the data derived it. 

Finally, both DLIES-KEM and ECIES-KEM make use of a Key Derivation Function. The 

reader may refer to §3.3.7 for sensitive data related to KDF. 

3.5.4.1 Schemes bases on modular exponential groups 

In addition to the evaluation tasks mentioned in §3.5.4, this section provides additional 

procedures regarding Key Establishment scheme based on modular exponential groups. 

[FFKeyEstablishment-ImplementationPitfall-1] The evaluation task 

[FFDLOG-ImplementationPitfall-1] shall be considered: the manipulated values 

have order divisible by 𝑟 and dividing 𝑞. 

I1 

or 

I3 

 

DH 

The tester shall refer to the evaluation tasks mentioned in §3.5.4. 

DLIES-KEM 

The tester shall refer to the evaluation tasks mentioned in §3.5.4. 

3.5.4.2 Schemes bases on elliptic curves 

In addition to the evaluation tasks mentioned in §3.5.4, this section provides additional 

procedures regarding Key Establishment scheme based on elliptic curves. 

[ECKeyEstablishment-ImplementationPitfall-1] The evaluation task 

[ECDLOG-ImplementationPitfall-1] shall be considered: the point of the other 

entity shall lie on the curve and in be in the intended subgroup. 

I1 

or 

I3 

 

EC-DH 

The tester shall refer to the evaluation tasks mentioned in §3.5.4 and 3.5.2.2. 

ECIES-KEM 

The tester shall refer to the evaluation tasks mentioned in §3.5.4 and 3.5.2.2. 



 

54 

3.6 Random Generator 

The quality of random numbers (keys, random elements of cryptographic primitives) is a 

crucial element for the security of a system. 

3.6.1 Random Source 

[RandomSource-AgreedMechanism-1] The tester shall verify that the output 

produced by a random source is postprocessed using a Deterministic Random Bit 

Generator. 

I1 

Analysis: A mere random source, e.g. a physical random number generator, is not 

considered agreed as is in . 

3.6.2 Deterministic Random Bit Generator 

A Deterministic Random Generator (DRG) is built around an internal state, that can be 

seeded and refreshed by output of a random source. 

[DRG-AgreedMechanism-1] The tester shall verify that the used DRG is agreed . I1 

The agreed mechanisms are: HMAC-DRBG, Hash-DRBG and CTR-DRBG. These 

mechanisms are specified in  and . 

 

[DRG-AgreedMechanism-2] The tester shall verify that the underlying primitives 

in the DRG scheme are agreed . 
I1 

Analysis: The security of the DRG depends on the underlying function’s behaviour when 

processing a series of sequential input blocks.  

 

[DRG-AgreedMechanism-3] The tester shall verify that the DRG is backtracking 

resistant.  
I1 

Analysis: If the random number generator is backtracking resistant and is used to 

produce ephemeral keys of an agreed key exchange, then an attacker who has recovered 

the current state of the random number generator will not be able to break the Perfect 

Forward Secrecy property. 

 

[DRG-ConformanceTesting-1] The tester shall perform conformance tests of the 

underlying primitives used in the DRG. 

I1 

I2 

 

[DRG-ConformanceTesting-2] The tester shall perform KATs or the 

methodology of §5.1.6 related to DRG.  
I2 

[DRG-SourceCodeAnalysis-1] The tester shall verify in the source code that the 

implementation is compliant with the specifications. 

The tester shall still use §5.1.6 for implementation representation analysis, as 

§5.1.6 may contain some specific cases. 

I3 

 

[DRG-ImplementationPitfall-1] The tester shall identify the random sources 

used to seed for instantiating and reseed for updating the internal state of the 

DRG. The tester also shall analyse their random quality: the tester shall verify that 

the entropy of the seed is at least 125 bits long.  

I1 

I2 

I3 

Analysis: A very bad way to seed a DRG would be to use the current time only. The test 

consists to check if the entropy provided by the identified random sources is sufficient and 

cannot be reduced depending on the context. In particular, the seed used for reseeding 

shall be different than the seed used for the DRG instantiation . The DRG must be seeded 

with sufficient entropy to provide the required for the security strength. The min-entropy 

length 125 is from . 
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[DRG-ImplementationPitfall-2] The tester shall verify that the internal state of 

the DRG is periodically reseeded with random source to ensure enough entropy in 

case of generation of large random quantity.  

I1 

or 

I3 

Analysis: In some implementations (as smartcards), reseeding may not be possible and 

an alternative to reseeding shall be to create an entirely new instantiation (to obtain a 

new seed and guarantee enough entropy in the DRG internal state). 

 

Sensitive data within DRG implementations 

The sensitive data are the seed(s) used to initialise or re-seed the DRG, and the internal 

state of the DRG. The random bits output by the mechanisms are also often sensitive (e.g. 

if used to generate a secret key). Note that the seed(s) and the DRG internal state should 

be protected at least as well as these generated random bits. 

HMAC-DRBG 

The tester shall refer to the evaluation tasks mentioned in §3.6.1 and.3.6.2. 

Sensitive data within HMAC-DRBG implementations 

This paragraph specifies the sensitive data for a HMAC-DRBG mechanism, in addition to 

ones specified for DRGs. 

Since HMAC-DRBG is based on a HMAC, the reader may refer to the paragraph on HMAC 

in §3.3.3 for the sensitive data related to this mechanism where the key, the message and 

the generated MAC are sensitive.  

Hash-DRBG 

The tester shall refer to the evaluation tasks mentioned in §3.6.1 and.3.6.2. 

Sensitive data within Hash-DRBG implementations 

This paragraph specifies the sensitive data for a Hash-DRBG mechanism, in addition to 

ones specified for Deterministic Random Bit Generator. 

Since Hash-DRBG is based on a hash function, the reader may refer to §3.1.3 for the 

sensitive data related to this kind of primitive, where the input and the output are 

sensitive.  

CTR-DRBG 

The tester shall refer to the evaluation tasks mentioned in §3.6.1 and.3.6.2. 

In addition to these evaluation tasks, this section provides additional procedures regarding 

CTR-DRG. 

 

[CTRDBRG-AgreedMechanism-1] The tester shall verify that a single invocation 

of the CTR-DRBG generate function is not done for the generation of several 

different keys, if the property of perfect forward secrecy is required in the system. 

I1 

or 

I3 

Analysis: The backtracking resistance of CTR-DRBG is only given for the transition 

function between different invocations. 

Sensitive data within CTR-DRBG implementations 

This paragraph specifies the sensitive data for a CTR-DRBG mechanism, in addition to 

ones specified for Deterministic Random Bit Generator. 

Since CTR-DRBG is based on a use of a block cipher in CTR mode, the reader may refer to 

paragraphs §3.1.1 on block ciphers, and to the paragraph on the CTR mode in §3.3.1 for 

the sensitive data related to these kinds of primitives and mechanisms, where the key, 

the input and the output of the block cipher primitive are sensitive. 

3.6.3 Random Number Generator with Specific 
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Distribution 

For specific usage, the DRBG as described previously cannot be used directly because 

random numbers need to follow specific distributions. Asymmetric cryptographic 

mechanisms are example for which a random number generator needs to provide some 

random prime integers with specific characteristics. 

 

[KeyPairGenerator-ImplementationPitfall-1] The tester shall verify that the 

probability that the number generated by the random number generator is 

composite is lower than 1 (2125)⁄ . 

I1 

or 

I3 

Analysis: If the generation process does not prove the primality of the output, it shall be 

analysed by the tester. For example, if the Miller-Rabin algorithm is used, 4 iterations are 

enough to generate prime numbers of size 1536 bits with a probability error of 1 ⁄ (2128). 

Sensitive data within RNG with Specific Distribution implementations 

Assuming that the final random number is considered sensitive, the sensitive data are the 

random bits obtained from the DRG, and all the intermediary values during the 

computations leading to the random number.  

3.7  Key Management 

Note 53 of  states that “the management of the keys by the product should not enable a 

potential attacker to recover any information about secret and private keys used to 

protect user information, nor to alter or inject public keys used to protect identities”. 

This principle is refined in the different life cycles of the keys: 

- Key Generation; 

- Key Storage and Transport; 

- Key Use; 

- Key Destruction. 

 

[KeyManagement-SourceCodeAnalysis-1] The tester shall list all the keys 

used in the system with a clear identification of their generation, storage and 

transport, use, and destruction. 

I1 

Analysis: This task is done using the design and implementation representation. The 

main goal of this task is to have a clear understanding of the different keys used. This will 

help for the tasks of the sections below which refine the main concept of “Key 

Management”. 

3.7.1 Key Generation 

Depending on the cryptosystem, the key can be generated using the following 

mechanisms: 

- Deterministic random bit generator; 

- Key establishment mechanism; 

- Key derivation function. 

 

[KeyGeneration-AgreedMechanism-1] Depending on the used generation 

process, the tester shall evaluate the key generation mechanism according to the 

following sections of this document: 

- 3.6.2 “”; 

- 3.5.4 “”; 

- 3.3.7 “”. 

I1 

I2 

I3 

Analysis: In a system, many random variables might be generated for different 

purposes, sometimes unrelated to security. Non-agreed DRGs might be used for these 

variables generation. The tester shall verify that any generation of a variable using a non-

agreed DRG is not a cryptographic secret, or it is not used for a cryptographic secret 
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generation. For example, in C language, the tester can search for calls to the weak DRG 

rand and verify that is it used for variables unrelated to any cryptographic secret. 

 

3.7.2 Key Storage and Transport 

[KeyStorage-AgreedMechanism-1] The tester shall verify that the key stored 

are protected in authenticity and integrity for public keys, secret keys and private 

keys. In addition, secret and private keys shall be protected in confidentiality. 

I1 

or 

I3 

 

[KeyTransport-ImplementationPitFall-1] The tester shall verify that the key 

distribution channel is protected in authenticity and integrity for public keys and 

secret keys. In addition, secret keys shall be protected in confidentiality. 

I1 

or 

I3 

Analysis: Some cryptographic keys must be distributed between identified users, allowing 

them to access to sensitive data protected by the related cryptosystems. So, protection of 

the key distribution channel is crucial. Also, if the system allows users to load their secret 

key generated outside the system, the tester shall check that the secret key has not been 

modified during import. 

 

[KeyStorage-ConformanceTesting-1] The tester shall perform the conformance 

tests of the underlying mechanisms used for key storage and transport. 

I1 

I2 

3.7.3 Key Usage 

[KeyUsage-ImplementationPitfall-1] The tester shall verify that each key has 

only one usage. 

I1 

or 

I3 

Analysis: A key must not be used with different mechanisms or contexts, otherwise an 

attacker could exploit a source of errors of usage of the key. This does not forbid to derive 

various keys from a master key. 

 

[KeyManagement-ImplementationPitfall-1] The tester shall verify that the 

variable memory allocated for a key is locked when it is manipulated by the 

system. 

I3 

3.7.4 Key Destruction 

[KeyDestruction-SourceCodeAnalysis-1] The tester shall verify that secret 

keys are securely erased after usage. 
I3 

Analysis: This task needs a source code analysis. The erasure process must be adapted 

to the environment and takes remanence issues into account. 
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4 Traceability of the evaluation tasks 
In summary, the following evaluation tasks shall be considered for EC-DSA. 

Procedure Description 

[DigitalSignature-AgreedMechanism-2] 

Those tasks are related to the mechanism. 

[DigitalSignature-ConformanceTesting-2] 

or 

[DigitalSignature-SourceCodeAnalysis-1] 

[DSA-AgreedMechanism-1] 

[DSA-ImplementationPitfall-1] 

[ECDLOG-AgreedMechanism-1] 

Those tasks are related to the underlying 
elliptic curve. 

[ECDLOG-ConformanceTesting-1]  

[ECDLOG-ConformanceTesting-2] 

[ECDLOG-ConformanceTesting-3] 

[ECDLOG-ConformanceTesting-4] 

or 

[ECDLOG-SourceCodeAnalysis-1] 

[ECDLOG-ImplementationPitfall-1] 

[HashFunctions-AgreedMechanism-1] 

Those tasks are related to the underlying 
hash function. 

[HashFunctions-ConformanceTesting-1] 

[HashFunctions-ConformanceTesting-2] 

[HashFunctions-ConformanceTesting-3] 

or 

[HashFunctions-SourceCodeAnalysis-1] 

 

[TODO for each mechanism.] 
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5 Appendix 

5.1  KATs or similar methodology 

This section provides KATs or a similar methodology for each cryptographic mechanism if 

required for conformance testing. All provided KATs shall be tested, or the entire cited 

methodology shall be followed. 

5.1.1 Symmetric Atomic Primitives 

AES 

No KAT required to test this primitive. 

TRIPLE-DES 

No KAT required to test this primitive. 

SHA-2 

The tester shall use the KATs provided in the files named after the hash function. 

Following the methodology of NIST8, for each test, a text in hexadecimal value and a 

repeat number are provided as inputs. The output consists in hashing the text repeated 

repeat time.  

Only byte-oriented tests are provided. For bit-oriented tests, the tester shall use the 

public KATs provided in [NESSIE] or the methodology given in  (except the Monte Carlo 

Test). 

SHA-3 

The methodology defined in  shall be used to test the primitive (except the Monte Carlo 

Test). 

SHAMIR’S SECRET SHARING 

[KATs to find or define, including tests with different number of shares ] 

5.1.2 Multiplication in 𝑮𝑭(𝟐𝟏𝟐𝟖) 

No KAT required to test this primitive. 

5.1.3 Symmetric Mechanisms 

5.1.3.1 Symmetric Encryption (Confidentiality Only) 

CTR 

KATs are provided in files named “ctr-no_padding-correct_ciphertext-block_primitve.json” 

with: 

- block_primitive being either “3des112”, “3des168”, “aes128”, “aes192” or 

“aes256” for the corresponding block primitive. 

The tests are displayed as decryption tests: the output is the plaintext. However, they 

can be used for encryption as well. In this case, the tester takes the “correct_ciphertext”, 

has to switch the “plaintext” and “ciphertext” objects. 

 

8  https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-

KATMCT1.pdf 

https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-KATMCT1.pdf
https://csrc.nist.gov/CSRC/media/Projects/Hash-Functions/documents/SHA3-KATMCT1.pdf
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The following test cases are given: 

Test description Test number 

Empty message to encrypt. 001 

i (i varying from 1 to 8 × 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 − 1) bytes long message. 002 to 8 × 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 

 

OFB 

KATs are provided in files named “ofb-no_padding-correct_ciphertext-block_primitve.json” 

with: 

- block_primitive being either “3des112”, “3des168”, “aes128”, “aes192” or 

“aes256” for the corresponding block primitive. 

The tests are displayed as decryption tests: the output is the plaintext. However, they 

can be used for encryption as well. In this case, the tester takes the “correct_ciphertext”, 

has to switch the “plaintext” and “ciphertext” objects. 

 

The following test cases are given for correct ciphertexts: 

Test description Test number 

Empty message to encrypt. 001 

i (i varying from 1 to 8 × 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 − 1) bytes long message to encrypt. 002 to 8 × 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 

 

CBC 

KATs are provided in files named “cbc-no_padding-correct_ciphertext-block_primitve.json” 

with: 

- padding_scheme being either “pkcs7”, “iso7816” or “no_padding”; 

- ciphertext_correctness being either “correct_ciphertext” or “incorrect_ciphertext”; 

- block_primitive being either “3des112”, “3des168”, “aes128”, “aes192” or 

“aes256” for the corresponding block primitive. 

 

The tests are displayed as decryption tests: the output is the plaintext if the ciphertext 

is valid and “incorrect ciphertext” otherwise. However, they can be used for encryption as 

well. In this case, the tester takes the “correct_ciphertext”, has to switch the “plaintext” 

and “ciphertext” objects. 

 

For correct ciphertexts with paddings, the following test cases are given: 

Test description Test number 

Empty message to encrypt. Need a full block of padding. 001 

i (i varying from 1 to 8 × 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 − 1) bytes long message to encrypt. 

The padding needs to be adjusted accordingly. 
002 to 8 × 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 

 

For incorrect ciphertexts with ISO-7816 padding, the following test cases are given: 

Test description Test number 

The byte number i (i varying from 0 to 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 − 1)  (starting from the 

left) of the padding is incorrect. 
001 to 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 

The decrypted blocks are formed of zero bytes. This is to test a possible 
overflow when all bytes are tested against the byte 0x80 or a byte 
different from 0x00. 

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 + 1 
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For incorrect ciphertexts with PKCS#7 padding, the following test cases are given: 

Test description Test number 

The byte number i (i varying from 0 to 𝑚𝑠𝑔𝑙𝑒𝑛 − 1)  (starting from the 

left) for a message of 𝑚𝑠𝑔𝑙𝑒𝑛 bytes of the padding is incorrect. 

001 to 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 ∗
(𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 + 1) 

Each byte of the decrypted block is larger than the block size. This is to 
test a possible overflow when the end of the decrypted blocks buffer is 
reached. 

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 ∗ (𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒
+ 1) + 1 

The padding length is equal to one block size plus one, as well as the 
padding length included in each byte of the padding. 

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 ∗ (𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒
+ 1) + 2 

 

 

CBC is occasionally used without paddings if plaintexts have constant sizes. It is used 

generally to encrypt other keys. KATs are provided with plaintexts of size multiple of the 

block size. The following test cases are given: 

Test description Test number 

i (i varying from 1 to 8) blocks long message to encrypt. 001 to 008 

 

CBC-CS 

[KATs to be defined.] 

CFB 

KATs are provided in files named “cfb-no_padding-correct_ciphertext-block_primitve.json” 

with: 

- block_primitive being either “3des112”, “3des168”, “aes128”, “aes192” or 

“aes256” for the corresponding block primitive. 

The tests are displayed as decryption tests: the output is the plaintext. However, they 

can be used for encryption as well. In this case, the tester takes the “correct_ciphertext”, 

has to switch the “plaintext” and “ciphertext” objects. 

 

The following test cases are given for correct ciphertexts: 

Test description Test number 

Empty message to encrypt. 001 

i (i varying from 1 to 127) bytes long message to encrypt. 002 to 128 

5.1.3.2 Symmetric Disk Encryption 

XTS 

The tester shall use the methodology defined in . 

CBC-ESSIV 

[KATs to find or define.] 

5.1.3.3 MAC 

CMAC 

The tester shall use the methodology defined in . 
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CBC-MAC 

The tester shall use KATs in [NESSIE]. 

HMAC 

KATs are provided in files named “hmac-sha.json” with: 

- sha being the hash function used. 

The following test cases are given: 

Test description Test number 

The message is empty. 001 

The message is exacly hash_blocksize (which is the block size of the 
inner hash functions). 

002 

Test representing a regular use case (the key is 16 bytes long, and the 

message is 21 bytes long) 
003 

 

GMAC 

The tester shall use the methodology defined in  with zero-length plaintext and MAC 

length 128 bits. 

5.1.3.4 AE 

Encrypt-then-MAC 

[KATs to find or define.] 

MAC-then-Encrypt 

[KATs to find or define.] 

Encrypt-and-MAC 

[KATs to find or define. AMOSSYS is thinking in combining KATs provided for symmetric 

encryption (confidentiality only) and MAC.] 

CCM 

The tester shall use KATs available in  and NIST . 

GCM 

The tester shall use KATs available in the Wycheproof project9. 

EAX 

The tester shall use  which provides 10 test vectors (indicated as not verified in the paper) 

in its Appendix E for EAX-AES128. Vectors were provided by Jack Lloyd and later verified 

by Brian Gladman . 

5.1.3.5 Key Protection 

SIV 

The tester shall use KATs in  if the underlying block cipher is AES. 

 

9 https://github.com/google/wycheproof/blob/master/testvectors/aes_gcm_test.json 
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AES-Keywrap 

The tester shall use test vectors available in  and . 

5.1.3.6 Key Derivation 

NIST SP800-56 ABC 

The tester shall use public KATs available in , , . 

ANSI-X9.63-KDF 

[KATs to find or define.] 

PBKDF2 

[KATs to find or define.] 

5.1.4 Asymmetric Primitives 

Exponentiation 

[KATs to find or define.] 

RSA recombination 

[KATs to find or define.] 

EC scalar multiplication 

[KATs to find or define. In particular special cases with known bug attacks such as CVE-

2017-8932 and CVE-2017-10176.] 

Multi EC scalar multiplication 

[KATs to find or define.] 

5.1.5 Asymmetric Constructions 

5.1.5.1 Asymmetric Encryption 

For each RSA encryption mechanism, KATs are provided in files named 

“encryption_mechanism-size-ciphertext_correctness-hash_function.json” with: 

- encryption_mechanism being either “rsa_oaep” or “rsa_pkcs1v1_5” for the 

corresponding mechanisms; 

- ciphertext_correctness being either “correct_ciphertext” or “incorrect_ciphertext”; 

- size being either 2048, 3072 or 4096 for the modulus bit length; 

- hash_function being the used hash function in the mechanism (for OAEP only). 

The tests are displayed as decryption tests: the output is the plaintext if the ciphertext 

is valid and “incorrect ciphertext” otherwise. However, they can be used for encryption as 

well. In this case, the tester takes the “correct_ciphertext”, has to switch the “plaintext” 

and “ciphertext” objects and use the public key given in the “debug_information” object. 

The private key is provided in both extended and simple private key parameters, to test 

both exponentiation functions. 

RSA OAEP 

Test cases are given following the specification of the mechanism in . 

The hash function in the file name provides the hash function used for both computation 

of 𝑙𝐻𝑎𝑠ℎ and in MGF. 
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For correct ciphertexts, the following test cases are given (with hLen being the hash digest 

length): 

Test description Test number 

‘Normal’ encryption, with a label. 001 

‘Normal’ encryption, without a label. 002 

Empty plaintext, with a label. 003 

Empty plaintext, without a label. 004 

The plaintext is k-2hLen-2 bytes long. PS is then empty. 005 

 

For incorrect ciphertexts, the following test cases are given (with hLen being the hash 

digest length, psLen the length of PS): 

Test description Test number 

The ciphertext is longer than n. The test corresponds to a failure at Step 
1.b of RSASES-OAEP-Decryption Specification. 

001 

The ciphertext is equal to n. The test corresponds to a failure at Step 
2.b of RSASES-OAEP-Decryption Specification. 

002 

The ciphertext is equal to a valid ciphertext (denoted c) plus n. c has 
been chosen such that c+n has the same byte length than c and n. The 
test corresponds to a failure at Step 2.b of RSASES-OAEP-Decryption 
Specification. 

003 

DB is set to DB = lHash || 00…00. This can lead to a buffer overflow 

when trying to reach the end of PS (the first non-zero byte). The test 
corresponds to a failure at Step 3.g of RSASES-OAEP-Decryption 
Specification. 

004 

Byte number i (i varying from 1 to hLen) of lHash is incorrect (XORed 
with 0x01) in DB. The test corresponds to a failure at Step 3.g of 
RSASES-OAEP-Decryption Specification. 

005 to 005+hLen 

The first byte of EM is 0x01 instead of 0x00. Checking this value allow 

to mitigate Manger's attack. The test corresponds to a failure at Step 
3.g of RSASES-OAEP-Decryption Specification. 

006+hLen 

The byte number i (i varying from 1 to hLen-1) of PS is set to 0xFF 

instead of 0x00 in DB. 

007+hLen to 

007+hLen+psLen-1 

The ciphertext is equal to one. 007+hLen+psLen 

The ciphertext is equal to zero. 008+hLen+psLen 

The ciphertext is equal to n-1. 009+hLen+psLen 

RSA PKCS#1v1.5 – Encryption 

Test cases are given following the specification of the mechanism in . 

For correct ciphertexts, the following test cases are given: 

Test description Test number 

‘Normal’ encryption. 001 

Empty plaintext. 002 

 

For incorrect ciphertexts, the following test cases are given: 

Test description Test number 

The ciphertext is longer than n. The test corresponds to a failure at Step 
1.b of RSASES-OAEP-Decryption Specification. 

001 

The ciphertext is equal to a valid ciphertext (denoted c) plus n. c has 
been chosen such that c+n has the same byte length than c and n. The 
test corresponds to a failure at Step 2.b of RSASES-PKCS1-v1_5-
Decryption Specification. 

002 
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Test description Test number 

The first byte of EM is 0x01 instead of 0x00. The test corresponds to a 

failure at Step 3 (part 1) of RSASES-PKCS1-v1_5-Decryption 

Specification. 

003 

EM is encoded using PKCS#1v1.5 signature padding instead of 
encryption. The test corresponds to a failure at Step 3 (part 2) of 
RSASES-PKCS1-v1_5-Decryption Specification. 

004 

The byte to separate PS from M is 0x01 instead of 0x00. This test can 

lead to a buffer overflow if the decryption is not correctly implemented. 
The test corresponds to a failure at Step 3 (part 3) of RSASES-PKCS1-
v1_5-Decryption Specification. 

005 

PS contains 7 bytes (the minimum size is 8). M has been appended with 
leading zero bytes. The test corresponds to a failure at Step 3 (part 4) 

of RSASES-PKCS1-v1_5-Decryption Specification. 

006 

The ciphertext is equal to zero. 007 

The ciphertext is equal to one. 008 

The ciphertext is equal to n-1. 009 

5.1.5.2 Digital Signature 

5.1.5.2.1 RSA based schemes 

For each RSA signature mechanism, KATs are provided in files named 

“signature_mechanism-size-signature_correctness-hash_function.json” with: 

- signature_mechanism being either “rsa_oaep” or “rsa_pkcs1v1_5” for the 

corresponding mechanisms; 

- signature_correctness being either “correct_signature” or “incorrect_signature”; 

- size being either 2048, 3072 or 4096 for the modulus bit length; 

- hash_function being the used hash function in the mechanism. 

The tests are displayed as verification tests: the inputs are the plaintext and the 

signature, the output is either “correct signature” or “incorrect signature”. However, they 

can be used for testing signature generation as well. In this case, the tester takes the 

“correct_signature”, the output is the signature and use the public key (and possibly the 

random seed) given in the “debug_information” object. For testing the signature function, 

the DRG used is tweaked: the random seed returned is the one provided in the KAT. 

The private key is provided in both extended and simple private key parameters, to test 

both exponentiation functions. 

RSA PSS 

Test cases are given following the specification of the mechanism in . 

The KATs are limited to salt length being equal the size of the digest output. 

For correct signatures, the following test cases are given: 

Test description Test number 

‘Normal’ signature. 001 

Empty plaintext. 002 

 

For incorrect signatures, the following test cases are given (k being the modulus length in 

bytes, hLen being the hash digest length): 

Test description Test number 

The signature is longer than n. The test corresponds to a failure at Step 
1 of RSASSA-PSS-Verify Specification. 

001 

The signature is equal to n. The test corresponds to a failure at Step 2.b 
of RSASSA-PSS-Verify Specification. 

002 
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Test description Test number 

The signature is equal to a valid signature (denoted s) plus n. s has 

been chosen such that s+n has the same byte length than s and n. The 

test corresponds to a failure at Step 2.b of RSASSA-PSS-Verify 
Specification. 

003 

The salt length is too large. Note that the signature is valid in the sense 
that it has been correctly generated with the correct intermediate 
variables in debug_information. However, the salt length as input of the 
verification function is incorrect and larger than the limit. The test 

corresponds to a failure at Step 3 of RSASSA-PSS-Verify Specification, 
Step 3 of EMSA-PSS-Verify Specification. 

004 

End byte 0xbc of EM has been replaced by 0x00. The test corresponds 
to a failure at Step 3 of RSASSA-PSS-Verify Specification, Step 4 of 
EMSA-PSS-Verify Specification. 

005 

Byte number i (i varying from 1 to k-2hLen-2) of DB is different to 0. 
The test corresponds to a failure at Step 3 of RSASSA-PSS-Verify 
Specification, Step 10 of EMSA-PSS-Verify Specification (first part). 

006 to 006+k-2hLen-2-1 

Byte 0x01 of DB has been changed to 0x00. The test corresponds to a 
failure at Step 3 of RSASSA-PSS-Verify Specification, Step 10 of EMSA-

PSS-Verify Specification (second part). 

004+k-2hLen 

Byte number i (i varying from 1 to hLen) of H has been changed (the 
correct byte has been XORed to 0x01). The test corresponds to a failure 
at Step 3 of RSASSA-PSS-Verify Specification, Step 14 of EMSA-PSS-
Verify Specification. 

005+k-2hLen to 005+k-
hLen 

The signature is equal to zero. 006+k-hLen 

The signature is equal to one. 007+k-hLen 

The signature is equal to n-1. 008+k-hLen 

RSA PKCS#1v1.5 – Signature 

Test cases are given following the specification of the mechanism in . 

For correct signatures, the following test cases are given: 

Test description Test number 

‘Normal’ signature. 001 

Empty plaintext. 002 

 

For incorrect signatures, the following test cases are given (k is the modulus length in 

bytes): 

Test description Test number 

The signature is equal to n. The test corresponds to a failure at Step 2.b 
of RSASSA-PKCS1-v1_5-Verify Specification. 

001 

The signature is equal to a valid signature (denoted s) plus n. s has 
been chosen such that s+n has the same byte length than s and n. The 

test corresponds to a failure at Step 2.b of RSASSA-PKCS1-v1_5-Verify 
Specification. 

002 

Byte number i (i varying from 1 to k) of EM has been changed (the 
correct byte has been XORed to 0x01). The test corresponds to a failure 
at Step 10 of RSASSA-PKCS1-v1_5-Verify Specification. 

003 to 003+k 

The signature is equal to zero. 004+k 

The signature is equal to one. 005+k 

The signature is equal to n-1. 006+k 

S is less than eight bytes long. The correct bytes have been replaced by 
0x00. The test corresponds to a failure at Step 3 of EMSA-PKCS1-v1_5 
Specification. 

007+k 

There is no 0x00 byte after PS. This can lead to an overflow if the 
implementation tries to reach a zero byte in EM. 

008+k 
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Test description Test number 

There is no prefix identifying the hash function. PS has been extended 

consequently. 
009+k 

 

5.1.5.2.2 DSA based schemes (in finite fields) 

KCDSA 

KATs are provided in files named “kcdsa-signature_correctness-group-hash_function.json” 

with: 

- signature_correctness being either “correct_signature” or “incorrect_signature”; 

- group corresponding to the agreed group modulo a prime number; 

- hash_function being the used hash function in the mechanism. 

The tests are displayed as verification tests: the inputs are the plaintext and the 

signature, and the output is either “correct signature” or “incorrect signature”. However, 

they can be used for testing signature generation as well. In this case, the tester takes 

the “correct_signature”, the output is the signature and use the public key (and possibly 

the random seed) given in the “debug_information” object. For testing the signature 

function, the DRG used is tweaked: the random seed returned is the one provided in the 

KAT. 

The correct signatures are conform with , especially the truncation method of the digest 

(Step 5 of Section 4.1.3). 

For correct signatures, the following test cases are given: 

Test description Test number 

The message to sign is empty. 001 

Tests representing regular use cases. 002 to 010 

 

For incorrect signatures, the following test cases are given: 

Test description Test number 

The signature is invalid because (r, s) has been randomly drawn. 001 

q has been added to s. The signature is invalid because s > q. 002 

The signature is invalid because s = q. 003 

The signature is invalid because s = 0. 004 

The signature is invalid because the intermediate value g^(z/s) * 
y^(r/s) = 1 (mod p) (r = -z/x mod q) 

005 

Schnorr 

KATs are provided in files named “sdsa-signature_correctness-group-hash_function.json” 

with: 

- signature_correctness being either “correct_signature” or “incorrect_signature”; 

- group corresponding to the agreed group modulo a prime number; 

- hash_function being the used hash function in the mechanism. 

The tests are displayed as verification tests: the inputs are the plaintext and the 

signature, and the output is either “correct signature” or “incorrect signature”. However, 

they can be used for testing signature generation as well. In this case, the tester takes 

the “correct_signature”, the output is the signature and use the public key (and possibly 

the random seed) given in the “debug_information” object. For testing the signature 

function, the DRG used is tweaked: the random seed returned is the one provided in the 

KAT. 

The correct signatures are conform with , especially the truncation method of the digest 

(Step 5 of Section 4.1.3). 
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For correct signatures, the following test cases are given: 

Test description Test number 

The message to sign is empty. 001 

Tests representing regular use cases. 002 to 010 

 

For incorrect signatures, the following test cases are given: 

Test description Test number 

The signature is invalid because (r, s) has been randomly drawn. 001 

q has been added to r. The signature is invalid because r > q. 002 

The signature is invalid because r = q. 003 

The signature is invalid because r = 0. 004 

q has been added to s. The signature is invalid because s > q. 005 

The signature is invalid because s = q. 006 

The signature is invalid because s = 0. 007 

The signature is invalid because the intermediate value g^s * y^(-r) = 

1 (mod p) (s = r * x mod q). 
008 

DSA 

KATs are provided in files named “dsa-signature_correctness-group-hash_function.json” 

with: 

- signature_correctness being either “correct_signature” or “incorrect_signature”; 

- group corresponding to the agreed group modulo a prime number; 

- hash_function being the used hash function in the mechanism. 

The tests are displayed as verification tests: the inputs are the plaintext and the 

signature, and the output is either “correct signature” or “incorrect signature”. However, 

they can be used for testing signature generation as well. In this case, the tester takes 

the “correct_signature”, the output is the signature and use the public key (and possibly 

the random seed) given in the “debug_information” object. For testing the signature 

function, the DRG used is tweaked: the random seed returned is the one provided in the 

KAT. 

The correct signatures are conform with , especially the truncation method of the digest 

(Step 5 of Section 4.1.3). 

For correct signatures, the following test cases are given: 

Test description Test number 

The message to sign is empty. 001 

Tests representing regular use cases. 002 to 010 

 

For incorrect signatures, the following test cases are given: 

Test description Test number 

The signature is invalid because (r, s) has been randomly drawn. 001 

q has been added to r. The signature is invalid because r > q. 002 

The signature is invalid because r = q. 003 

The signature is invalid because r = 0. 004 

q has been added to s. The signature is invalid because s > q. 005 

The signature is invalid because s = q. 006 

The signature is invalid because s = 0. 007 

The signature is invalid because the intermediate value g^(z/s) * 
y^(r/s) = 1 (mod p) (r = -z/x mod q). 

008 
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5.1.5.2.3 DSA based schemes (EC variants) 

EC-KCDSA 

KATs are provided in files named “eckcdsa-signature_correctness-curve- 

hash_function.json” with: 

- signature_correctness being either “correct_signature” or “incorrect_signature”; 

- curve corresponding to the agreed elliptic curve; 

- hash_function being the used hash function in the mechanism. 

The tests are displayed as verification tests: the inputs are the plaintext and the 

signature, and the output is either “correct signature” or “incorrect signature”. However, 

they can be used for testing signature generation as well. In this case, the tester takes 

the “correct_signature”, the output is the signature and use the public key (and possibly 

the random seed) given in the “debug_information” object. For testing the signature 

function, the DRG used is tweaked: the random seed returned is the one provided in the 

KAT. 

The correct signatures are conform with , especially the truncation method of the digest 

(Step 5 of Section 4.1.3). 

For correct signatures, the following test cases are given: 

Test description Test number 

The message to sign is empty. 001 

Tests representing regular use cases. 002 to 010 

 

For incorrect signatures, the following test cases are given: 

Test description Test number 

The signature is invalid because (r, s) has been randomly drawn. 001 

q has been added to s. The signature is invalid because s > q. 002 

The signature is invalid because s = q. 003 

The signature is invalid because s = 0. 004 

The signature is invalid because r = 2^h, with h the underlying digest 
size. 

005 

The signature is invalid because the public point is the point at infinity. 006 

The signature is invalid because the public point is not on the curve. 007 

s = -w*d mod q. Therefore, the intermediate point is the point at 

infinity. 
008 

EC-DSA 

KATs are provided in files named “ecdsa-signature_correctness-curve-hash_function.json” 

with: 

- signature_correctness being either “correct_signature” or “incorrect_signature”; 

- curve corresponding to the agreed elliptic curve; 

- hash_function being the used hash function in the mechanism. 

The tests are displayed as verification tests: the inputs are the plaintext and the 

signature, and the output is either “correct signature” or “incorrect signature”. However, 

they can be used for testing signature generation as well. In this case, the tester takes 

the “correct_signature”, the output is the signature and use the public key (and possibly 

the random seed) given in the “debug_information” object. For testing the signature 

function, the DRG used is tweaked: the random seed returned is the one provided in the 

KAT. 

The correct signatures are conform with , especially the truncation method of the digest 

(Step 5 of Section 4.1.3).  

For correct signatures, the following test cases are given: 
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Test description Test number 

The message to sign is empty. 001 

Tests representing regular use cases. 002 to 010 

 

For incorrect signatures, the following test cases are given: 

Test description Test number 

The signature is invalid because (r, s) has been randomly drawn. 001 

q has been added to r. The signature is invalid because r > q. 002 

The signature is invalid because r = q. 003 

The signature is invalid because r = 0. 004 

q has been added to s. The signature is invalid because s > q. 005 

The signature is invalid because s = q. 006 

The signature is invalid because s = 0. 007 

The signature is invalid because the public point is the point at infinity. 008 

The signature is invalid because the public point is not on the curve. 009 

r = -H(m)/d mod q. Therefore, the intermediate point is the point at 
infinity. 

010 

 

EC-GDSA 

KATs are provided in files named “ecgdsa-signature_correctness-curve-

hash_function.json” with: 

- signature_correctness being either “correct_signature” or “incorrect_signature”; 

- curve corresponding to the agreed elliptic curve; 

- hash_function being the used hash function in the mechanism. 

The tests are displayed as verification tests: the inputs are the plaintext and the 

signature, and the output is either “correct signature” or “incorrect signature”. However, 

they can be used for testing signature generation as well. In this case, the tester takes 

the “correct_signature”, the output is the signature and use the public key (and possibly 

the random seed) given in the “debug_information” object. For testing the signature 

function, the DRG used is tweaked: the random seed returned is the one provided in the 

KAT. 

The correct signatures are conform with , especially the truncation method of the digest 

(Step 5 of Section 4.1.3). 

For correct signatures, the following test cases are given: 

Test description Test number 

The message to sign is empty. 001 

Tests representing regular use cases. 002 to 010 

 

For incorrect signatures, the following test cases are given: 

Test description Test number 

The signature is invalid because (r, s) has been randomly drawn. 001 

q has been added to r. The signature is invalid because r > q. 002 

The signature is invalid because r = q. 003 

The signature is invalid because r = 0. 004 

q has been added to s. The signature is invalid because s > q. 005 

The signature is invalid because s = q. 006 

The signature is invalid because s = 0. 007 

The signature is invalid because the public point is the point at infinity. 008 

The signature is invalid because the public point is not on the curve. 009 
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Test description Test number 

s = -H(m) * d mod q. Therefore, the intermediate point is the point at 

infinity. 
010 

EC-SDSA (Schnorr Signature Scheme) 

KATs are provided in files named “ecsdsa-signature_correctness-curve-

hash_function.json” with: 

- signature_correctness being either “correct_signature” or “incorrect_signature”; 

- curve corresponding to the agreed elliptic curve; 

- hash_function being the used hash function in the mechanism. 

The tests are displayed as verification tests: the inputs are the plaintext and the 

signature, and the output is either “correct signature” or “incorrect signature”. However, 

they can be used for testing signature generation as well. In this case, the tester takes 

the “correct_signature”, the output is the signature and use the public key (and possibly 

the random seed) given in the “debug_information” object. For testing the signature 

function, the DRG used is tweaked: the random seed returned is the one provided in the 

KAT. 

The correct signatures are conform with , especially the truncation method of the digest 

(Step 5 of Section 4.1.3). 

For correct signatures, the following test cases are given: 

Test description Test number 

The message to sign is empty. 001 

Tests representing regular use cases. 002 to 010 

 

For incorrect signatures, the following test cases are given: 

Test description Test number 

The signature is invalid because (r, s) has been randomly drawn. 001 

q has been added to r. The signature is invalid because r > q. 002 

The signature is invalid because r = q. 003 

The signature is invalid because r = 0. 004 

q has been added to s. The signature is invalid because s > q. 005 

The signature is invalid because s = q. 006 

The signature is invalid because s = 0. 007 

The signature is invalid because the public point is the point at infinity. 008 

The signature is invalid because the public point is not on the curve. 009 

s = r * d mod q. Therefore, the intermediate point is the point at 
infinity. 

010 

EC-FSDSA (Full Schnorr Signature Scheme) 

KATs are provided in files named “ecfsdsa-signature_correctness-curve-

hash_function.json” with: 

- signature_correctness being either “correct_signature” or “incorrect_signature”; 

- curve corresponding to the agreed elliptic curve; 

- hash_function being the used hash function in the mechanism. 

The tests are displayed as verification tests: the inputs are the plaintext and the 

signature, and the output is either “correct signature” or “incorrect signature”. However, 

they can be used for testing signature generation as well. In this case, the tester takes 

the “correct_signature”, the output is the signature and use the public key (and possibly 

the random seed) given in the “debug_information” object. For testing the signature 

function, the DRG used is tweaked: the random seed returned is the one provided in the 

KAT. 
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The correct signatures are conform with , especially the truncation method of the digest 

(Step 5 of Section 4.1.3). 

For correct signatures, the following test cases are given: 

Test description Test number 

The message to sign is empty. 001 

Tests representing regular use cases. 002 to 010 

 

For incorrect signatures, the following test cases are given: 

Test description Test number 

The signature is invalid because (r, s) has been randomly drawn. 001 

q has been added to s. The signature is invalid because s > q. 002 

The signature is invalid because s = q. 003 

The signature is invalid because s = 0. 004 

The signature is invalid because r does not correspond to a point on the 
curve. 

005 

The signature is invalid because r corresponds to the point at infinity. 006 

The signature is invalid because the public point is the point at infinity. 007 

The signature is invalid because the public point is not on the curve. 008 

s = r * d mod q. Therefore, the intermediate point is the point at 

infinity. 
009 

 

5.1.5.3 Key Establishment 

5.1.5.3.1  Key Establishment (modular exponential groups) 

DH 

Diffie-Hellman Modular Exponential Groups are largely used. They are defined in . The 

tester shall use KATs available in the Pyca project10. 

DLIES-KEM 

[KATs to find or define.] 

5.1.5.3.2  Key Establishment (EC variants) 

EC-DH 

[KATs to find or define.] 

ECIES-KEM 

The tester shall use KATs available in ISO/IEC 18033-211. 

5.1.6 Deterministic Random Bit Generator 

HMAC-DRBG 

The tester shall use the methodology defined in . 

 

10

 https://github.com/pyca/cryptography/blob/master/vectors/cryptography_vectors/

asymmetric/DH/rfc3526.txt 

11 http://shoup.net/iso/std4.pdf 

https://github.com/pyca/cryptography/blob/master/vectors/cryptography_vectors/asymmetric/DH/rfc3526.txt
https://github.com/pyca/cryptography/blob/master/vectors/cryptography_vectors/asymmetric/DH/rfc3526.txt
http://shoup.net/iso/std4.pdf
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Hash-DRBG 

The tester shall use the methodology defined in . 

CTR-DRBG 

The tester shall use the methodology defined in . 

5.2  MCT 

[MCT samples to create when MCT will be validated for each primitive.] 


